Crops ›› 2016, Vol. 32 ›› Issue (4): 112-117.doi: 10.16035/j.issn.1001-7283.2016.04.018

Previous Articles     Next Articles

Isolation and Identification of Endophytic Bacteria from Roots of Four Inbred Lines in Maize

Xu Yanrui1,Fang Zhijun2,Lu Xiaoping1,Mu Chunhua2,Fan Qiuping1,Hao Lujiang1   

  1. 1 Shandong Provincial Key Laboratory of Microbial Engineering,Qilu University of Technology,Jinan 250353,Shandong,China
    2 Maize Research Institute,Shandong Academy of Agricultural Sciences,Jinan 250100,Shandong,China
  • Received:2016-04-18 Revised:2016-05-29 Online:2016-08-15 Published:2018-08-26
  • Contact: Lujiang Hao

Abstract:

The endophytic bacteria strains were isolated and characterized from 4 maize (Zea mays L.) inbred lines (PH4CV,PH6WC,Zheng 58 and Chang 7-2),which provided beneficial bacterial strains for further research.On the basis of morphological,physiological,biochemistry and 16S rDNA sequence homology analysis,23 endophytic bacteria were identified to be Bacillussp.,Pseudomonas sp.,Stenotrophomonas sp.,Enterobacter sp.,Variovorax sp.and Sphingobacterium sp..Of them,Bacillus sp.was predominant,distributed in 4 maize inbred lines.The comparative analysis of endophytic bacteria in different maize inbred lines indicated that the population number of different bacterial species was varied.And the bacteria abundance was associated with maize genotypes as the following order,PH6WC>Zheng 58>PH4CV>Chang 7-2.These results indicate that entophytic bacteria populations and their abundance are associated with maize genotypes.

Key words: Maize roots, Endophytic bacteria, 16S rDNA, Isolation and identification

Table 1

PCR reaction system"

组成Ingredient 用量Dosage(μL)
10×PCR缓冲液 4.0
Mg2+ 2.4
dNTP(25mmol/L) 0.8
上游引物GM5F(25pmol/μL) 2.0
下游引物907R(25pmol/μL) 2.0
模板DNA 2.0
Taq酶(5U/μL) 0.8
ddH2O 26.0

Table 2

Morphological characteristics of strains"

菌落形态Colony morphology 革兰氏染色Gram stain
菌株编号
Stain code
形状
Shape
颜色
Color
表面
Surface
边缘特征
Border
透明度
Transparency
迁移性
Migratory
结果
Result
菌体形状
Bacteria shape
PH4CV-1 圆形 白略带黄 隆起 毛状 不透明 G+ 杆状
PH4CV-2 圆形 隆起 圆整 不透明 G- 杆状
PH4CV-3 圆形 隆起 毛状 不透明 G+ 杆状
PH6WC-1 圆形 隆起小 圆整 不透明 G+ 杆状
PH6WC-2 圆形 隆起 圆整 不透明 G+ 球形
PH6WC-3 圆形 乳黄 隆起 圆整 半透明 G+ 杆状
PH6WC-4 圆形 不隆起 圆整 不透明 G+ 杆状
PH6WC-5 圆形 乳黄 隆起 不规则 不透明 G+ 球形
PH6WC-6 圆形 隆起 圆整 不透明 G+ 杆状
PH6WC-7 圆形 不明显 丝状 不透明 G+ 杆状
Zh58-1 圆形 乳黄 隆起小 圆整 不透明 G+ 杆状
Zh58-2 圆形 隆起 圆整 不透明 G+ 杆状
Zh58-3 圆形 白略带黄 隆起 圆整 不透明 G- 杆状
菌落形态Colony morphology 革兰氏染色Gram stain
菌株编号
Stain code
形状
Shape
颜色
Color
表面
Surface
边缘特征
Border
透明度
Transparency
迁移性
Migratory
结果
Result
菌体形状
Bacteria shape
Zh58-4 圆形 白略带黄 隆起 圆整 不透明 G+ 球形
Zh58-5 圆形 隆起 较圆整 不透明 G+ 杆状
Zh58-6 圆形 不明显 丝状 不透明 迁移 G- 杆状
Ch7-a 圆形 隆起 圆整 不透明 G+ 杆状
Ch7-b 圆形 灰白色 隆起 圆整 不透明 G+ 杆状
Ch7-c 圆形 隆起 圆整 不透明 G+ 杆状
Ch7-d 圆形 隆起 圆整 不透明 G+ 球形
Ch7-e 圆形 白略带黄 隆起 毛状 不透明 G+ 杆状
Ch7-f 片状 隆起 触手状 不透明 G+ 杆状
Ch7-g 圆形 黄带白毛 不明显 丝状 不透明 G- 杆状

Table 3

Physiological and biochemical characteristics of strains"

菌株编号Strain code 淀粉水解试验
Starch hydrolysis
甲基红试验
Methyl red
硫化氢试验
Hydrogen sulfide
硝酸盐还原试验
Nitrate reduction
吲哚试验
Indole
V-P试验
V-P
柠檬酸盐利用试验
Citrate utilization
明胶液化试验
Gelatin liquefaction
PH4CV-1 - + + - + + - -
PH4CV-2 - + - - + + + -
PH4CV-3 - + + + + - + +
PH6WC-1 - + + - - + + -
PH6WC-2 - - + - + - + -
PH6WC-3 - + + - - + + -
PH6WC-4 - + + - - + + -
PH6WC-5 - - + - + - + -
PH6WC-6 + - + + + - - -
PH6WC-7 - - + + + - + -
Zh58-1 - - - + + - - +
Zh58-2 - - - + + - + -
Zh58-3 - - - + + - - +
Zh58-4 - - - - + - + -
Zh58-5 - - + + + - + +
Zh58-6 - - + - - - - +
Ch7-a + - + + + - - -
Ch7-b + - + + + - - -
Ch7-c + - + + + - - -
Ch7-d - - + - + - + -
Ch7-e - - - + + - - +
Ch7-f + + - - - + + -
Ch7-g - + + - + + + -

Fig.1

A profile of genomic DNA extracted from 8 bacterial strains M:λ-DNA/Hind III,Lanes 1-8: bacterial strains"

Fig.2

A profile of 16S rDNA PCR amplification of 8 bacterial strains M: DNA Marker G,Lanes 1-8: the 16S rDNA amplification products from different strains"

Table 4

Results of 23 bacterial strains on 16S rDNA analysis"

菌株编号Strain code 序列长度Sequence length(bp) 相似度Similarity(%) GenBank number 相似菌株Similar strains
PH4CV-1 552 99 KP233828 Stenotrophomonassp.OUC_Est10
PH4CV-2 552 99 JX174251.1 Enterobacter sp.2374
PH4CV-3 554 99 HM055978 Bacillus pumilus strain MB-36
PH6WC-1 549 99 FJ577964 Enterobacter sp.T1
PH6WC-2 550 99 EU373423 Sphingobacterium siyangensis strain YRL14
PH6WC-3 564 99 LN650480 Bacillus aerophilus
PH6WC-4 593 99 JX393000 Stenotrophomonas maltophilia strain W8-1
PH6WC-5 568 98 DQ103761 Pseudomonas aeruginosa
PH6WC-6 564 99 JF893458 Bacillus sp.NIOC27
PH6WC-7 560 99 DQ658992 Bacillus sp.JZDN42
Zh58-1 549 99 JX133197 Stenotrophomonas maltophilia strain UI3
Zh58-2 559 99 HF584815.1 Pseudomonas sp.
Zh58-3 558 99 KJ472791 Variovorax paradoxusstrain ZR 1-3
Zh58-4 550 99 HM055957 Bacillus pumilus strain MB-15
Zh58-5 564 99 KC236781 Pseudomonas sp.B1009
Zh58-6 568 99 KM287518.1 Pseudomonas sp.FRT-Slr-28
Ch7-a 549 99 GQ392047.1 Bacillus sp.HCYL05
Ch7-b 550 100 FJ944650 Bacillus megateriumstrain KUDC1027
Ch7-c 563 99 KC845545 Bacillus sp.DX3
Ch7-d 562 99 HM055961 Bacillus pumilus strain MB-19
Ch7-e 564 99 HM055978 Bacillus pumilus strain MB-36
Ch7-f 548 100 DQ649444 Bacillus sp.YACN-9
Ch7-g 562 99 GQ392044 Bacillus anthracis strain HCYL02

Table 5

The separation frequency of endophytic bacteria from 4 maize inbred lines"

自交系Inbreds Bacillussp. Pseudomonassp. Enterobactersp. Variovoraxsp. Stenotrophomonassp. Sphingobacteriumsp. 合计
PH4CV 1/3 - 1/3 - 1/3 - 3
PH6WC 3/7 1/7 1/7 - 1/7 1/7 5
郑58 Zheng 58 1/6 3/6 - 1/6 1/6 - 4
昌7-2 Ch7-2 4/4 - - - - - 1

Fig.3

Phylogenetic tree of bacterial 16S rDNA from 23 typical strains"

[1] 辜运富, 张云飞, 张小平 . 一株抗玉米纹枯病内生细菌的分离鉴定及其抗病促生作用. 微生物学通报, 2008,35(8):1240-1245.
[2] Wongsa P, Tanaka M, Ueno A , et al. Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline,kerosene,diesel oil,and lubricating oil. Current Microbiology, 2004,49(6):415-422.
doi: 10.1007/s00284-004-4347-y
[3] 严婉荣, 赵廷昌, 肖彤斌 , 等. 生防细菌在植物病害防治中的应用. 基因组学与应用生物学, 2013,32(4):533-539.
[4] 周德庆 . 微生物学实验教程.2版.北京: 高等教育出版社, 2006: 367-385.
[5] 东秀珠, 蔡妙英 .常见细菌系统鉴定手册.北京: 科学出版社, 2001: 365-375.
[6] Ma H Y, Jiang G L, Wu Z Q , et al. 16S rRNA gene phylogenesis of culturable predominant bacteria from diseased Apostichopus japonicus (Holothuroidea,Echinodermata). Journal of Ocean University of China, 2009,8(2):166-170.
doi: 10.1007/s11802-009-0166-x
[7] 澳斯柏 金斯顿 R E,塞德曼 J G, 等. 精编分子生物学实验指南.颜子颖,王海林,译.北京:科学出版社, 1998: 99-103.
[8] Thompson J D, Gibson T J, Plewniak F , et al. The clustal-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997,25(24):4876-4882.
doi: 10.1093/nar/25.24.4876
[9] Saitou N, Nei M . The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 1987,4:406-425.
[10] 赵蕊, 霍贵成 . 新疆酸奶子中乳酸菌多样性分析. 山东大学学报(理学版), 2008,43(7):18-22.
[11] 高增贵, 庄敬华, 陈捷 , 等. 玉米根系内生细菌种群及动态分析. 应用生态学报, 2004,15(8):1344-1348.
[12] 王平, 冯新梅, 王国新 , 等. 小麦根圈细菌中PGPR的筛选及其初步鉴定. 华中农业大学学报, 1999,18(4):352-356.
[13] 刘国奇, 蒋如漳 . 韭菜根际荧光假单胞菌株的分离和初步研究. 微生物学通报, 1999,26(3):189-192.
[14] 徐立新, 董章勇, 纪春艳 , 等. 玉米内生拮抗细菌枯草芽孢杆菌A16对小斑病菌拮抗作用的研究. 广东农业科学, 2010,37(9):20-26.
[15] 候美玲, 辛媛媛, 郝志敏 , 等. 玉米内生芽胞杆菌的抗菌活性物质及其拮抗玉米大斑病菌机理的初步研究. 农业生物技术学报, 2012,20(9):1018-1027.
[16] Dey R, Pal K K, Bhatt D M , et al. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research, 2004,159(4):371-394.
doi: 10.1016/j.micres.2004.08.004
[17] 沈萍, 闫淑珍, 陈双林 , 等. 具ACC脱氨酶活性的植物内生细菌对辣椒的促生作用和对疫霉病的防治作用. 植物保护学报, 2008,35(1):28-32.
[18] 滕松山, 刘艳萍, 赵蕾 . 具ACC脱氨酶活性的碱蓬内生细菌的分离、鉴定及其生物学特性. 微生物学报, 2010,50(11):1503-1509.
[19] 杨海君, 谭周进, 肖启明 , 等. 假单胞菌的生物防治作用研究. 中国生态农业学报, 2004,12(3):158-161.
[20] 王昀璐, 花日茂, 唐欣昀 . 寡养单胞菌在环境保护中的应用研究进展. 安徽农业科学, 2010,38(28):15796-15797,15800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .