Crops ›› 2016, Vol. 32 ›› Issue (4): 41-46.doi: 10.16035/j.issn.1001-7283.2016.04.007

Previous Articles     Next Articles

Identification and Gene Mapping of a Yellow-Leaf Rice Mutant ys94

Ming Ming,Wang Ying,Lin Qibing,Wang Yihua,Cheng Zhijun   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences,Beijing 100081,China
  • Received:2016-04-01 Revised:2016-06-14 Online:2016-08-15 Published:2018-08-26
  • Contact: Zhijun Cheng

Abstract:

Abstrate A yellow-leaf mutant ys94 was isolated by chemical mutagenesis. Compared with its wild type, ys94 mutant displayed yellow leaf phenotype and reduced contents of both chlorophyll a and chlorophyll b in the germination period. The results of electron microscopic observation revealed that there were significantly reduced number of chloroplast,chloroplast dysplasia and degenerated thylakoid lamella in the ys94 in compared to WT.The tiller number of the mutant was reduced,but the plant height,the number of spikelets per panicle and the seed setting had no significant difference with the wild type. Genetic analysis showed that the mutation of ys94 was controlled by one recessive nuclear gene. Map-based mapping of the mutant gene was conducted by using of the F2population from ys94×DJY. The mutant gene was finally mapped to a 140kb region between the maker M8-3 and M8-24 on the short arm of chromosome 8, in which there were 11 annotated genes. Our study results have set a foundation for future cloning and functional analysis of the gene.

Key words: Key words Rice, Leaf-colour mutant, Gene mapping, Yellow leaf, ys94

Table 1

Agronomic traits of the WT and mutant"

农艺性状Agronomic traits 野生型Wild type 突变体ys94 比对照增减Compared with WT(%)
株高Plant height(cm) 103.03±3.36 102.53±2.91 -0.49
分蘖数Tiller number(个) 9.89±1.69 8.91±1.42 -9.90*
结实率Seed-setting rate(%) 82.93±1.71 84.41±1.30 1.70
有效分蘖数Effective tiller number(个) 9.26±1.60 8.66±1.36 -6.50*
每穗粒数No. of spikelets per panicle(粒) 102.77±20.23 103.18±22.78 0.40
千粒重1000-kernel weight(g) 24.41±0.03 25.11±0.04 2.90

Fig.1

Comparison of photosynthetic pigments contents between the WT and the ys94 mutant Different letters indicate significant difference at P=0.01 level"

Fig.2

Ultrastructures of the development of chloroplasts in the WT and ys94 mutant A: Overview of chloroplasts in WT plants; B: Overview of chloroplasts in mutant plants; C: Ultrastructure of the chloroplast in WT plants; D: Ultrastructure of the chloroplast in mutant plants"

Fig.3

Expression levels of genes associated with pigment metabolism and photosynthesis in WT and ys94"

Fig.4

Fine mapping of target gene The target gene was located in the interval of 140kb delimited by markers M8-3 and M8-24 using 2216 F2 mutants"

Fig.5

Sequence analysis of the candidate gene LOC_Os08g12840 in WT and mutant"

[1] 李燕群, 高家旭, 肖云华 , 等. 水稻ygl80黄绿叶突变体的遗传分析与目标基因精细定位. 作物学报, 2014,40(4):644-649.
doi: 10.3724/SP.J.1006.2014.00644
[2] Yoo S C, Cho S H, Sugimoto H , et al. Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. The Plant Physiology, 2009,150:388-401.
doi: 10.1104/pp.109.136648
[3] 邓晓娟, 张海清, 王悦 , 等. 水稻叶色突变基因研究进展. 杂交水稻, 2012,25(5):9-14.
[4] Jung K H, Hur J, Ryu C H , et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiology, 2003,44(5):463-472.
doi: 10.1093/pcp/pcg064
[5] Lee S, Kim J H, Yoo E S , et al. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Molecular Biology, 2005,57(6):805-818.
doi: 10.1007/s11103-005-2066-9
[6] Wang P, Gao J, Wan C , et al. Divinyl chlorophyll( ide) a can be converted to monovinyl chlorophyll( ide) a by a divinyl reductase in rice. Plant Physiology, 2010,153(3):994-1003.
doi: 10.1104/pp.110.158477
[7] Zhang H, Li J, Yoo J H , et al. Rice chlororina-1 and chlorine-9 encode chlD and Chll subunits of Mg-chelatase,a key enzyme for chlorophyll synthesis and chloroplast development. Plant Molecular Biology, 2006,62(3):325-337.
doi: 10.1007/s11103-006-9024-z
[8] Dong H, Fei G L, Wu C Y , et al. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiology, 2013,162(4):1867-1880.
doi: 10.1104/pp.113.217604
[9] Zhao C, Xu J, Chen Y , et al. Molecular cloning and characterization of OsCHR4,a rice chromatin-remodeling factor required for early chloroplast development in adaxial mesophyll. Planta, 2012,236(4):1165-1176.
doi: 10.1007/s00425-012-1667-1
[10] Zhou K, Ren Y, Lü J , et al. Young leaf chlorosis 1,a chloroplast-localized gene required for chlorophyll and lutein accumulation during early leaf development in rice. Planta, 2013,237(1):279-292.
doi: 10.1007/s00425-012-1756-1
[11] Larkin R M, Alonso J M, Ecker J R , et al. GUN4,a regulator of chlorophyll synthesis and intracellular signaling. Science, 2003,299:902-906.
doi: 10.1126/science.1079978
[12] 董凤高, 朱旭东, 熊振民 , 等. 以淡绿色为标记的籼稻光-温敏核不育系M2S的选育. 中国水稻科学, 1995,9(2):65-70.
[13] Arnon D I . Copper enzymes in isolated chloroplasts:polyphenoloxidase in Beta vulgaris. Plant Physiology, 1949,24:1-15.
doi: 10.1104/pp.24.1.1
[14] Holtorf H, Apel K . Transcripts of the two NADPH protochlorophyllide oxideredductase genes PorA and PorB are differentially degraded in etiolated barley seedlings. Plant Molecular Biology, 1996,31:387-392.
doi: 10.1007/BF00021799
[15] Wu Z, Zhang X, He B , et al. A chlorophyll deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesisi. Plant Physiology, 2007,145:29-40.
doi: 10.1104/pp.107.100321
[16] Reinbothe S, Reinbothe C, Lebedev N , et al. PORA and PORB,two light-dependent protochlorophyllide-reducing enzymes of angiosperm chlorophyll biosynthesis. Plant Cell, 1996,8(5):763-769.
doi: 10.1105/tpc.8.5.763
[17] Xiao W Y, Jen S . The role of hexokinase in plant sugar signal transduction and growth and development. Plant Molecular Biology, 2000,44(4):451-461.
doi: 10.1023/A:1026501430422
[18] Klein R R, Mason H S, Mullet J E . Light-regulated translation of chloroplast proteins.I.Transcripts of psaA-psaB,psbA,and rbcL are associated with polysomes in dark-grown and illuminated barley seedlings. The Journal of Cell Biology, 1988,2:289-301.
[19] Ha S B, An G . Identification of upstream regulatory elements involved in the developmental expression of the Arabidopsis haliana cab1 gene. Proceedings of the National Academy of Sciences of the USA, 1988,85:8017-8021.
doi: 10.1073/pnas.85.21.8017
[20] Yang X, Gong P, Li k, et al. A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice . Experimental Biology of Oxford University, 2016,19(5):109.
[21] Walter B, Hristou A, Nowaczyk M M , et al. In vitro reconstitution of co-translational D1 insertion reveals a role of the cpSec-Alb3 translocase and Vipp1 in photosystem II biogenesis. Biochemical Journal, 2015,468(2):315-324.
doi: 10.1042/BJ20141425
[22] Kuroda H, Suzuki H, Kusumegi T , et al. Translation of psbC mRNAs starts from the downstream GUG,not the upstream AUG,and requires the extended Shine-Dalgarno sequence in tobacco chloroplasts. Plant Cell Physiology, 2007,48(9):1374-1378.
doi: 10.1093/pcp/pcm097
[23] Stoppel R, Meurer J . Complex RNA metabolism in the chloroplast:an update on the psbB operon. Planta, 2013,237(2):441-449.
doi: 10.1007/s00425-012-1782-z
[24] 何冰, 刘玲珑, 张文伟 , 等. 植物叶色突变体. 植物生理学通讯, 2006,42(1):1-9.
[25] 王平荣, 张帆涛, 高家旭 , 等. 高等植物叶绿素生物合成的概述. 西北植物学报, 2009,29(3):629-636.
[26] 李广贤, 姚方印, 侯恒军 , 等. 水稻黄绿叶突变体ygl209的遗传分析与目标基因精细定位. 作物学报, 2015,41(10):1603-1611.
doi: 10.3724/SP.J.1006.2015.01603
[27] 王丹霞, 权瑞党, 黄荣峰 . 水稻yl1黄叶突变体的基因克隆与功能分析. 中国农业科技导报, 2015,17(2):41-48.
[28] Heath R J, Rock C O . Roles of the FabA and FabZ beta-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. Journal Biology Chemistry, 1996,271(44):27795-27801.
doi: 10.1074/jbc.271.44.27795
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .