Crops ›› 2017, Vol. 33 ›› Issue (4): 96-104.doi: 10.16035/j.issn.1001-7283.2017.04.017

Previous Articles     Next Articles

Comparison of Photosynthesis-Light Response Curve Fitting Model of Hulless Barley

Hou Weihai,Wang Jianlin, ,Hu Dan   

  1. Institute of Plant Sciences/Plateau Crop Molecular Breeding Laboratory,Xizang Agiriculture and Animal Husbandry College,Linzhi 860000,Tibet,China
  • Received:2017-04-13 Revised:2017-06-27 Online:2017-08-15 Published:2018-08-26
  • Contact: Jianlin Wang

Abstract:

Astract The mostly planted hulless barley species “Himalaya 22” in Tibet was used as the test material, and LI-6400XT photosynthetic apparatus was used to measure the photosynthetic light response curves of barley leaves in the 1st, 2nd and 3rd leaf at the flowering stage, and the rectangle hyperbola curve model (RH), modified rectangle hyperbolic curve model (MRH), exponential model (EM) and modified exponential model (MEM) were used to portray the light response curves of barley leaves at different positions. The fitting parameters of each model were compared and analyzed. The results showed that the maximum net photosynthetic rate (Pnmax) of barley leaves in the 1st, 2nd and 3rd leaf fitted by RH and NRH model was higher than the measured values, while the EM model fitting values were less than the measured value. The light saturation points (Is) of barley leaves in the 1st, 2nd and 3rd leaf fitted by RH and NRH were far less than the measured values, while the EM model fitting values were slightly less than the measured value; the Pnmax and Is of MRH were close to the measured values of the highland barley leaves at different position. Due to light suppression, the phase of the MRH model was negative, leading to that the Pnmax and Is could not be calculated. Under the condition of strong photosynthetically active radiation light (PAR>1 200μmol photon/m2·s), only the photosynthetic light response curve of barley leaves in the 1st, 2nd and 3rd leaf fitted by the model MRH was the closest to the measured photosynthetic curve with the best goodness of fit. The model fittng ranking was as follow: MRH model> MEM model> EM> RH, NRH model, therefore, the model MRH was the best fitting model of hulless barley.

Key words: Hulless barley, Light response model, Net photosynthetic rate, Light response curve

Table 1

Measured and fitted values of net photosynthetic rate-light response parameters of different position leaves on hulless barley in the five models"

光响应模型
Light response model
器官Organ α AQE Pnmax
[μmol CO2/
(m2·s)]
Is
[μmol CO2/(m2·s)]
Ic
[μmol CO2/(m2·s)]
Rd
[μmol CO2/(m2·s)]
β λ γ ξ k
Pnmax实测值 倒1叶 - - ≈17.16 1 200~1 600 ≈17.40 - - - - - -
Pnmaxmeasured value 倒2叶 - - ≈14.30 1 200~1 600 ≈15.20 - - - - - -
倒3叶 - - ≈10.22 1 600~2 000 ≈12.00 - - - - - -
RH 倒1叶 0.101 0.05 20.59 428.12 8.43 0.818 - - - - -
倒2叶 0.100 0.05 17.17 414.93 16.42 1.499 - - - - -
倒3叶 0.062 0.03 11.87 419.37 12.18 0.710 - - - - -
NRH 倒1叶 0.067 0.05 18.70 395.12 16.04 1.053 - - - - 0.654
倒2叶 0.063 0.05 15.62 368.42 16.29 0.963 - - - - 0.678
倒3叶 0.056 0.03 11.65 392.20 11.87 0.635 - - - - 0.187
MRH 倒1叶 0.083 - 18.31 1 609.37 15.82 1.250 0.000091 - 0.003 - -
倒2叶 0.074 - 15.36 1 320.69 16.39 1.035 0.000127 - 0.003 - -
倒3叶 0.054 - 10.95 2 022.56 10.99 0.568 0.000049 - 0.004 - -
EM 倒1叶 0.063 - 16.35 1 209.00 14.10 - - - - - -
倒2叶 0.059 - 13.72 1 085.00 13.80 - - - - - -
倒3叶 0.037 - 9.79 1 223.09 4.46 - - - - - -
MEM 倒1叶 - 0.07 - - 15.46 1.008 -0.000027 15.705 16.713 0.004 -
倒2叶 - 0.06 13.73 1 229.40 12.66 0.740 0.000032 14.400 15.142 0.004 -
倒3叶 - 0.04 - - 8.98 5.000 -0.000058 8.915 9.246 0.004 -

Fig.1

Comparative analysis measured and fitted values of net photosynthetic rate-light response model in the top three leaves of the hulless barley"

Fig.2

Comparative analysis measured and fitted values of net photosynthetic rate-light response model in the top three leaves of the hulless barley under high light conditions"

Table 2

Goodness of fit from fitted values of net photosynthetic rate-light response parameters of different position leaves on hulless barley in the five models"

光响应模型
Light response model
器官
Organ
拟合优度Goodness of fit
AIC Ra2 RMSE MAPE R2
RH 倒1叶 -11.34 0.990 0.671 12.740 0.991
倒2叶 -9.14 0.983 0.722 10.582 0.985
倒3叶 -41.01 0.994 0.283 3.380 0.995
NRH 倒1叶 -18.55 0.992 0.551 6.650 0.994
倒2叶 -13.76 0.986 0.646 9.552 0.989
倒3叶 -41.47 0.995 0.291 3.013 0.996
MRH 倒1叶 -19.92 0.994 0.526 8.767 0.995
倒2叶 -22.62 0.992 0.481 8.034 0.994
倒3叶 -45.82 0.996 0.254 3.404 0.997
EM 倒1叶 -17.43 0.993 0.547 6.418 0.994
倒2叶 -14.33 0.988 0.588 9.468 0.990
倒3叶 -30.46 0.990 0.363 6.559 0.991
MEM 倒1叶 -18.03 0.992 0.560 6.537 0.994
倒2叶 -15.80 0.987 0.603 9.505 0.990
倒3叶 -33.06 0.990 0.379 6.558 0.992
[1] Hans L F, Stuart C , Thijs L P.Plant Physiological Ecology. New York: Springer, 2008: 11-99.
[2] Henley W J . Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. Journal of Phycology, 1993,29(6):729-739.
doi: 10.1111/j.0022-3646.1993.00729.x
[3] Sharp R E, Matthews M A, Boyer J S . Kok effect and the quantum yield of photosynthesis. Plant Physiology, 1984,75:95-101.
doi: 10.1104/pp.75.1.95 pmid: 16663610
[4] Luo Y Q, Hui D F, Cheng W X , et al. Canopy quantum yield in a mesocosm study. Agricultural and Forest Meteorology, 2000,100(1):35-48.
doi: 10.1016/S0168-1923(99)00085-4
[5] Moreno-Sotomayor A, Weiss A, Paparozzi E T , et al. Stability of leaf anatomy and light response curves of field grown maize as a function of age and nitrogen status. Journal of Plant Physiology, 2002,159(8):819-826.
doi: 10.1078/0176-1617-00809
[6] Rascher U, Liebig M, Luttge U . Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell and Environment, 2000,23(12):1397-1405.
doi: 10.1046/j.1365-3040.2000.00650.x
[7] Posada J M, Lechowicz M J, Kitajima K . Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content. Annals of Botany, 2009,103(5):795-805.
doi: 10.1093/aob/mcn265
[8] 叶子飘, 于强 . 光合作用光响应模型的比较. 植物生态学报, 2008,32(6):1356-1361.
doi: 10.3773/j.issn.1005-264x.2008.06.016
[9] Lang Y, Wang M, Zhang G C , et al. Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soilwater conditions. Photosynthetica, 2013,51(3):370-378.
doi: 10.1007/s11099-013-0036-z
[10] Sui N, Li M, Meng Q , et al. Photosynthetic characteristics of a super high yield cultivar of winter wheat during late growth period. Journal of Integrative Agriculture, 2010,9(3):346-354.
[11] Falqueto A R , Silva F S P,Cassol D,et al.Chlorophyll fluorescence in rice: probing of senescence driven changes of PSⅡ activity on rice varieties differing in grain yield capacity. Brazilian Journal of Plant Physiology, 2010,22(1):35-41.
doi: 10.1590/S1677-04202010000100004
[12] Samborski S M, Tremblay N, Fallon E . Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agronomy Journal, 2009,101(4):800-816.
doi: 10.2134/agronj2008.0162Rx
[13] Gutierrez D, Gutierrez E, Perez P , et al. Acclimation to future atmospheric CO2 levels increases photochemical efficiency and mitigates photochemistry inhibition by warm temperatures in wheat under field chambers. Physiologiae Plantarum, 2009,137(1):86-100.
doi: 10.1111/ppl.2009.137.issue-1
[14] Munns R, James R A ,Sirault X R R,et al.New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. Journal of Experimental Botany, 2010,61(13):3499-3507.
doi: 10.1093/jxb/erq199
[15] Hura T, Hura K, Grzesiak M . Soil drought applied during the vegetative growth of triticale modified the physiological and biochemical adaptation to drought during the generative development. Journal of Agronomy and Crop Science, 2011,197(2):113-123.
doi: 10.1111/jac.2011.197.issue-2
[16] Friend A D, Woodward F I . Evolutionary and ecophysiological responses of mountain plants to the growing season environment. Advances in Ecological Research, 1990,20:59-124.
doi: 10.1016/S0065-2504(08)60053-7
[17] Vats S K, Kumar N, Kumar S . Gas exchange of response of barley and pea cultivars to altitude variation in Himalaya. Photosynthetica, 2009,47:41-45.
doi: 10.1007/s11099-009-0008-5
[18] Fan Y Z, Zhong Z M, Zhang X Z . A comparative analysis of photosynthetic characteristics of hulless barley at two altitudes on the Tibetan Plateau. Photosynthetica, 2011,49(1):112-118.
doi: 10.1007/s11099-011-0016-0
[19] Sakata T, Yokoi Y . Analysis of the O2 dependency in leaflevel photosynthesis of two Reynoutria japonica populations growing at different altitudes. Plant Cell Environment, 2002,25:65-74.
doi: 10.1046/j.0016-8025.2001.00809.x
[20] 刘铁梅, 谢国生 . 农业系统分析与模拟.北京: 科学出版社, 2010: 131-132.
[21] 柴胜丰, 唐健民, 杨雪 , 等. 4种模型对黄枝油杉光合光响应曲线的拟合分析. 广西科学院学报, 2015,31(4):286-291.
[22] 王海珍, 韩路, 徐雅丽 , 等. 干旱胁迫下胡杨光合光响应过程模拟与模型比较. 生态学报 2017,37(7):2315-2324.
doi: 10.5846/stxb201511242373
[23] 叶子飘, 高峻 . 光响应和CO2响应新模型在丹参中的应用. 西北农林科技大学学报(自然科学版), 2009,37(1):129-134.
[24] 叶子飘, 于强 . 一个光合作用光响应新模型与传统模型的比较. 沈阳农业大学学报, 2007,38(6):771-775.
[25] Kyei-B S, Lada R, Astatkie T , et al. Photosynthetic response of carrots to varying irradiances. Photosynthetica, 2003,41(2):301-305.
doi: 10.1021/ja056918d
[26] Thornley J H M . Mathematical Models in Plant Physiology. Mathematical Models in Plant Physiology, 1976: 307-313.
[27] Bassman J H, Zwier J C . Gas exchange characteristics of Populus trichocarpa,Populus deltoides and Populus trichocarpa×P. deltoides clones. Tree Physiology, 1991,8(2):145-159.
doi: 10.1093/treephys/8.2.145
[28] Chen Z Y, Peng Z S, Yang J , et al. A mathematical model for describing light-response curves in Nicotiana tabacum L. Photosynthetica, 2011,49(3):467-471.
doi: 10.1007/s11099-011-0056-5
[29] 陈根云, 俞冠路, 陈悦 , 等. 光合作用对光和二氧化碳响应的观测方法探讨. 植物生理与分子生物学学报, 2006,32(6):691-696.
doi: 10.3321/j.issn:1671-3877.2006.06.012
[30] 钟楚, 朱勇 . 几种光合作用光响应模型对烟草的适用性分析. 中国农业气象, 2013,34(1):74-80.
doi: 10.3969/j.issn.1000-6362.2013.01.011
[31] 刘强, 李凤日, 谢龙飞 . 人工长白落叶松冠层光合作用-光响应曲线最优模型. 应用生态学报, 2016,27(8):2420-2428.
doi: 10.13287/j.1001-9332.201608.023
[32] Fang L D, Zhang S Y, Zhang G C , et al. Application of five light-response models in the photosynthesis of Populus×Euramericana cv.‘Zhonglin46’ leaves. Applied Biochemistry and Biotechnology, 2015,176(1):86-100.
doi: 10.1007/s12010-015-1543-0
[33] 闫小红, 尹建华, 段世华 , 等. 四种水稻品种的光合光响应曲线及其模型拟合. 生态学杂志, 2013,32(3):604-610.
[34] 郎莹, 张光灿, 张征坤 , 等. 不同土壤水分下山杏光合作用光响应过程及其模拟. 生态学报, 2011,31(6):4499-4508.
[35] 马跃芳, 龚辉 . 大麦功能叶片对籽粒中干物质积累的影响.大麦与谷类科学, 1990(2):1-5.
[36] Richardson A D . Changes in foliar spectral reflectance and chlorophyll fluorescence of four temperate specics following branch cutting. Tree Physiology , 2002,22:499-506.
doi: 10.1093/treephys/22.7.499
[37] Yu Q, Zhang Y, Liu Y , et al. Simulation of the stomatal conductance of winter wheat in response to light,temperature and CO2 changes. Annals of Botany, 2004,93(4):435-441.
doi: 10.1093/aob/mch023
[38] Leakey A D, Uribelarrea M, Ainsworth E A , et al. Photosynthesis,productivity,and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiology, 2006,140(2):779-790.
doi: 10.1104/pp.105.073957
[39] 叶子飘, 康华靖 . 植物光响应修正模型中系数的生物学意义研究. 扬州大学学报(农业与生命科学版), 2012,32(2):51-57.
[1] . [J]. Crops, 2013, 29(3): 96-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .