Crops ›› 2019, Vol. 35 ›› Issue (3): 118-125.doi: 10.16035/j.issn.1001-7283.2019.03.019

Previous Articles     Next Articles

The Effects of High Temperature at Spike Stage on Grain-Filling Physiology and Yield of Maize

Fu Jing1,2,Sun Ningning1,Liu Tianxue1,Ma Junfeng1,Yang Yulong1,Zhao Xia2,Mu Xinyuan2,Li Chaohai1   

  1. 1 College of Agronomy, Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, Henan, China
    2 Cereal Research Institute,Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2018-10-31 Revised:2019-01-30 Online:2019-06-15 Published:2019-06-12
  • Contact: Tianxue Liu

Abstract:

To reveal the effects of high temperature stress at spike stage on grain-filling physiology and yield of maize, the temperature non-sensitive variety Zhengdan 958 and temperature sensitive variety Xianyu 335 were used as the experimental materials in this study. The results showed that the grain yields of Zhengdan 958 and Xianyu 335 decreased by 11.14% and 25.40%, respectively, compared with the control under high temperature at spike stage. High temperature treatment reduced the grain weight and the grain-filling rate at the early filling stage, delayed the time to reach the maximum filling rate, reduced growth of the maximum filling rate, increased the active filling period and reduced starch synthase activity at the early grain-filling stage of two maize varieties. The effects of high temperature treatment on Xianyu 335 was significantly higher than that of Zhengdan 958. The contents of auxin (IAA), zeatin riboside (ZR) and gibberellin (GA) in two maize varieties showed the same trend after high temperature treatment, which showed that the contents of IAA, ZR and GA decreased at the early filling stage and increased at the late filling stage, while the abscisic acid content followed the opposite trend.

Key words: Maize, High temperature stress, Grain filling, Enzyme activity, Hormone content

Fig.1

The average daily temperature and relative humidity CK: Natural temperature (Control); T: High temperature treatment. The same below"

Table 1

Effects of high temperature stress on grain yield and yield components of maize"

品种
Variety
处理
Treatment
穗粗(cm)
Ear
diameter
穗长(cm)
Ear length
秃尖长(cm)
Bare
tip length
穗行数
Number of
ear rows
行粒数
Number of
row grains
穗粒数
Kernels
per ear
百粒重(g)
100-kernel
weight
产量
(t/hm2)
Yield
郑单958 Zhengdan 958 CK 5.10a 19.16a 0.12c 15.61a 36.24a 564.75a 34.98b 11.85b
T 4.99a 18.64a 0.20c 15.17a 35.47b 534.56b 32.84c 10.53c
先玉335 Xianyu 335 CK 4.93a 18.61a 1.06b 15.70a 34.23c 536.92b 38.61a 12.44a
T 4.35b 16.58b 2.56a 14.22b 31.91d 453.07c 34.15b 9.28d

Table 2

Parameter of grain-filling under high temperature"

品种Variety 处理Treatment 决定系数Coefficient of determination Tmax(d) Wmax (mg/粒) Wmax(mg/grain) Gmax [mg/(粒·d)] Gmax[mg/(grain·d)] P (d)
郑单958 Zhengdan 958 CK 0.9945 18.13b 149.30b 12.90b 34.72c
T 0.9973 20.06a 140.36c 11.44c 36.81b
先玉335 Xianyu 335 CK 0.9969 16.93c 162.95a 15.21a 32.13d
T 0.9939 19.77ab 143.53c 11.27c 38.20a

Fig.2

Dynamics curve of grain weight-increasing and grain-filling rate of maize under high temperature"

Fig.3

Effects of high temperature on the activities of starch synthase in grains of maize"

Table 3

Correlations of activities of related enzymes to starch synthesis with grain-filling rate in grains"

品种
Variety
处理
Treatment
淀粉合成相关酶活性Activities of related enzymes to starch synthesis
结合态淀粉合酶GBSS 可溶性淀粉合酶SSS 蔗糖合酶SS 蔗糖磷酸合酶SPS
郑单958 CK 0.891** 0.939** 0.892** 0.890**
Zhengdan 958 T 0.977** 0.948** 0.998** 0.972**
先玉335 CK 0.883** 0.964** 0.938** 0.948**
Xianyu 335 T 0.922** 0.985** 0.963** 0.958**

Fig.4

Effects of high temperature on hormones contents in grain of maize"

Table 4

Correlations of hormones contents of grain with grain-filling rates of two maize varieties"

品种Variety 处理Treatment 生长素IAA 玉米素核苷ZR 赤霉素GA 脱落酸ABA
郑单958 Zhengdan 958 CK 0.957** 0.953** 0.959** -0.953**
T 0.955** 0.949** 0.914** -0.896**
先玉335 Xianyu 335 CK 0.982** 0.950** 0.976** -0.935**
T 0.970** 0.945** 0.985** -0.893**
[1] Battisti D S, Naylor R L . Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 2009,323(9):240-244.
doi: 10.1126/science.1164363
[2] Kotak S, Larkindale J, Lee U , et al. Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 2007,10(3):310-316.
doi: 10.1016/j.pbi.2007.04.011
[3] Juan I R E, María E O . Heat stress in temperate and tropical maize hybrids:differences in crop growth,biomass partitioning and reserves use. Field Crops Research, 2012,130:87-98.
doi: 10.1016/j.fcr.2012.02.009
[4] Edreira J I R, Otegui M E . Heat stress in temperate and tropical maize hybrids:A novel approach for assessing sources of kernel loss in field conditions. Field Crops Research, 2013,142(3):58-67.
doi: 10.1016/j.fcr.2012.11.009
[5] 于康珂 . 玉米穗发育对高温胁迫的响应. 郑州:河南农业大学, 2016.
[6] 赵龙飞, 李潮海, 刘天学 , 等. 花期前后高温对不同基因型玉米光合特性及产量和品质的影响. 中国农业科学, 2012,45(23):4947-4958.
doi: 10.3864/j.issn.0578-1752.2012.23.023
[7] 赵丽晓, 张萍, 王若男 , 等. 花后前期高温对玉米强弱势籽粒生长发育的影响. 作物学报, 2014,40(10):1839-1845.
doi: 10.3724/SP.J.1006.2014.01839
[8] 尹小刚, 王猛, 孔箐锌 , 等. 东北地区高温对玉米生产的影响及对策. 应用生态学报, 2015,26(1):186-198.
[9] 陈朝辉, 王安乐, 王娇娟 , 等. 高温对玉米生产的危害及防御措施. 作物杂志, 2008(4):90-92.
[10] Paponov I A, Sambo P, Schulte auf’m Erley G , et al. Grain yield and kernel weight of two maize genotypes differing in nitrogen use efficiency at various levels of nitrogen and carbohydrate availability during flowering and grain filling. Plant and Soil, 2005,272(1/2):111-123.
doi: 10.1007/s11104-004-4211-7
[11] James M G, Denyer K, Myers A M . Starch synthesis in the cereal endosperm. Current Opinion in Plant Biology, 2003,6(3):215-222.
doi: 10.1016/S1369-5266(03)00042-6
[12] Vandeputte G E, Delcour J A . From sucrose to starch granule to starch physical behaviour a focus on rice starch. Carbohydrate Polymers, 2004,58(3):245-266.
doi: 10.1016/j.carbpol.2004.06.003
[13] Wallwork M A B, Logue S J, Macleod L C . Effect of high temperature during grain filling on starch synthesis in the developing barley grain. Australian Journal of Plant Physiology, 1998,25(3):173-181.
[14] 王月福, 于振文, 李尚霞 , 等. 小麦籽粒灌浆过程中有关淀粉合成酶的活性及其效应. 作物学报, 2003,29(1):75-81.
[15] 张保仁, 董树亭, 胡昌浩 , 等. 高温对玉米籽粒淀粉合成及产量的影响. 作物学报, 2007,33(1):38-42.
[16] 杨艳华, 张亚东, 朱镇 , 等. 赤霉素(CA3)和脱落酸(ABA)对不同水稻品种生长和生理特性及GA20ox2、GA3ox2基因表达的影响. 中国水稻科学, 2010,24(4):433-437.
doi: 10.3969/j.issn.1001-7216.2010.04.017
[17] 李春燕, 徐雯, 刘立伟 , 等. 低温条件下拔节期小麦叶片内源激素含量和抗氧化酶活性的变化. 应用生态学报, 2015,26(7):2015-2022.
[18] 徐云姬, 顾道健, 张博博 , 等. 玉米果穗不同部位籽粒激素含量及其与胚乳发育和籽粒灌浆的关系. 作物学报, 2013,39(8):1452-1461.
doi: 10.3724/SP.J.1006.2013.01452
[19] 李利利 . 不同株高夏玉米品种产量形成的生理特性及种植密度调控的研究. 泰安:山东农业大学, 2012.
doi: 10.7666/d.y2116812
[20] 张萍, 陈冠英, 耿鹏 , 等. 籽粒灌浆期高温对不同耐热型玉米品种强弱势粒发育的影响. 中国农业科学, 2017,50(11):2061-2070.
[21] 于康珂, 孙宁宁, 詹静 , 等. 高温胁迫对不同热敏型玉米品种雌雄穗生理特性的影响. 玉米科学, 2017,25(4):84-91.
[22] 张吉旺, 董树亭, 王空军 , 等. 大田增温对夏玉米产量和品质的影响. 应用生态学报, 2007,18(1):52-56.
[23] 陈传永, 王荣焕, 赵久然 , 等. 不同生育时期遮光对玉米籽粒灌浆特性及产量的影响. 作物学报, 2014,40(9):1650-1657.
doi: 10.3724/SP.J.1006.2014.01650
[24] 孙峰成, 冯勇, 于卓 , 等. 12个玉米群体的主要农艺性状与产量、品质的灰色关联度分析. 华北农学报, 2012,27(1):102-105.
doi: 10.3969/j.issn.1000-7091.2012.01.019
[25] 刘帆, 石海春, 余学杰 . 玉米果穗主要性状与产量间的相关与通径分析. 玉米科学, 2005,13(3):17-20.
[26] 陆卫平, 陈国平, 郭景伦 , 等. 不同生态条件下玉米产量源库关系的研究. 作物学报, 1997,23(6):727-733.
[27] 傅晓艺, 何明琦, 史占良 , 等. 灌浆期高温胁迫对小麦灌浆特性和品质的影响. 麦类作物学报, 2015,35(6):867-872.
[28] 段骅, 杨建昌 . 高温对水稻的影响及其机制的研究进展. 中国水稻科学, 2012,26(4):393-400.
doi: 10.3969/j.issn.10017216.2012.04.002
[29] 杨欢, 沈鑫, 陆大雷 , 等. 籽粒建成期高温胁迫持续时间对糯玉米籽粒产量和淀粉品质的影响. 中国农业科学, 2017,50(11):2071-2082.
[30] Yuan L P . Increasing yield potential in rice by exploitation of heterosis//Virmani S S ed. Hybrid Rice Technology,New Developments and Future Prospects. Philippines:International Rice Research Institute, 1994: 1-6.
[31] Yuan L P . Hybrid rice breeding in China//Virmani S S,Sissiq E A,Muralidharan K. Advances in Hybrid Rice Technolog. Philippines:International Rice Research Institute, 1998: 27-33.
[32] 王志琴, 叶玉秀, 杨建昌 , 等. 水稻灌浆期籽粒中蔗糖合成酶活性的变化与调节. 作物学报, 2004,30(7):634-643.
[33] 吕艳梅, 谭伟平, 肖层林 , 等. 高温对优质水稻籽粒淀粉形成及淀粉合成相关酶活性的影响. 华北农学报, 2014,29(1):135-139.
doi: 10.7668/hbnxb.2014.01.025
[34] Yamakawa H, Hirose T, Kuroda M , et al. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiology, 2007,144(1):258-277.
doi: 10.1104/pp.107.098665
[35] 赵福成, 景立权, 闫发宝 , 等. 灌浆期高温胁迫对甜玉米籽粒糖分积累和蔗糖代谢相关酶活性的影响. 作物学报, 2013,39(9):1644-1651.
doi: 10.3724/SP.J.1006.2013.01644
[36] Hawker J S, Jenner C F . High temperature affects the activity of enzymes in the committed pathway of starch synthesis in developing wheat endosperm. Functional Plant Biology, 1993,20(2):197-209.
doi: 10.1071/PP9930197
[37] Maestri E, Klueva N, Perrotta C , et al. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology, 2002,48(5/6):667-681.
doi: 10.1023/A:1014826730024 pmid: 11999842
[38] 杨建昌, 王志琴, 朱庆森 , 等. ABA与GA对水稻籽粒灌浆的调控. 作物学报, 1999,25(3):341-348.
[39] 段骅 . 抽穗灌浆期高温对水稻品质和内源激素的影响. 扬州:扬州大学, 2010.
[40] Pareek A, Single S L, Grover A . Proteins alterations associated with salinity,desiccation,high and low temperature stresses and abscisic acid application in seedlings of Pusa 169,a high-yielding rice (Oryza sative L.) cultivar. Current Sciences, 1998,75(10):1023-1035.
[1] Lu Shouping,Zhang Hua,Meng Zhaodong,Mu Chunhua. Improvement of Grain Oil Content in Maize Inbred Lines by Molecular Markering Technology [J]. Crops, 2019, 35(3): 24-28.
[2] Ye Wenbin,He Yupeng,Wang Yu,Wang Han,Zhao Qingfang. Effects of Alkalized Olive Oil Processing Liquid Wastes on Seed Germination and Seedling Growth of Zea mays L. [J]. Crops, 2019, 35(3): 185-191.
[3] Dong Zhe,Yang Wude,Zhang Meijun,Zhu Hongfen,Wang Chao. Estimation Models of Maize Leaf SPAD Value Based on Hyperspectral Remote Sensing [J]. Crops, 2019, 35(3): 126-131.
[4] Wu Jianzhong,Li Suiyan,Lin Hong,Ma Yanhua,Pan Liyan,Li Donglin,Sun Dequan. Genetic Variation and Principal Component Analysis of Silage Maize Quality Traits [J]. Crops, 2019, 35(3): 42-48.
[5] Shi Yaxing,Dong Hui,Lu Baishan,Zhao Jiuran,Fan Yanli,Xu Li,Yu Ainian. Grain Dehydration and Gelatinization Characteristics of Waxy Maize at Different Harvesting Time [J]. Crops, 2019, 35(3): 112-117.
[6] Ren Honglei,Li Chunxia,Gong Shichen,Li Guoliang,Hu Guanghui,Wang Mingquan,Yang Jianfei. Genetic Correlation and Path Analysis of Yield and Agronomic Characteristics of Maize Hybrids in SPSS Software [J]. Crops, 2019, 35(3): 86-90.
[7] Xixi Dai,Heming Zhan,Xinghong Cui,Yinyue Zhao,Dandan Shan,Liang Zhang,Tiejun Wang. A Mathematical Model of Density Coupling and Its Optimization in Maize-Soybean Intercropping [J]. Crops, 2019, 35(2): 128-135.
[8] Dongmei Zhang,Xuefang Huang,Chunxia Jiang,Wei Zhang,Xiaojuan Wang,Huatao Liu,Liuying Yan,Enke Liu,Guangqian Zhai. Effects of Micro-Ridge Film Mulching on Soil Water and Temperature and Yield of Dryland Maize in Cold Areas [J]. Crops, 2019, 35(2): 115-121.
[9] Yufei Zhang,Lizhi Liu,Yuxuan Ma,Xiaochun Wang,Jianjun Dai. Effects of Tillage and Straw Returning Methods on Maize Yield and Potassium Accumulation and Transport [J]. Crops, 2019, 35(2): 122-127.
[10] Yaxing Shi,Li Xu,Jiuran Zhao,Baishan Lu,Yanli Fan. Waxy Maize Industry Advantages in China and Opportunities in the Development of the Belt and Road [J]. Crops, 2019, 35(2): 15-19.
[11] Huihui Tang,Yanli Xu,Qingyan Wang,Zhengbo Ma,Guangyan Li,Hui Dong,Zhiqiang Dong. Effects of Foliar Spraying 5-Aminolevulinic Acid on Spring Maize Growth and Yield under Different Planting Densities [J]. Crops, 2019, 35(2): 136-141.
[12] Zhiqiang Tao,Yanjie Wang,Demei Wang,Yushuang Yang,Zheli Xu,Guangcai Zhao,Xuhong Chang. Response of Productive Capacity among Tillers in Winter Wheat to Tridimensional Uniform Sowing [J]. Crops, 2019, 35(2): 110-114.
[13] Yifei Zhang,Song Yu,Yufeng Wang,Kejun Yang,Zhuangyuan Guo,Yao Li,Yishan Sun,Wenbao Jia,Yafeng Zhang. Research Progress on Agronomic Practice for Grain Moisture Loss of Maize [J]. Crops, 2019, 35(1): 1-8.
[14] Qian Liang,Wenya Liu,Junzhu Ge,Ming Zhao,Haipeng Hou,Yong′an Yang,Decai Xin. Regulation Effects of Narrow-Double Row Precision Sowing with Subsoiling on Yield in Summer Maize [J]. Crops, 2019, 35(1): 111-115.
[15] Yang Zhang,Huilin Yu,Yanbo Wang. Study on Yield and Related Traits of Maize Varieties in Different Ecological Regions of Eastern North China [J]. Crops, 2019, 35(1): 38-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yudong Fang,Tianfu Han. Research Progress in Speed Breeding of Crops[J]. Crops, 2019, 35(2): 1 -7 .
[2] Zhang Meng,Gou Jiulan,Wei Quanquan,Chen Long,He Jiafang. Effects of Different Biological Organic Fertilizers on the Growth of Spring Potato and Soil Fertility at High Altitude Region in Guizhou Province[J]. Crops, 2019, 35(3): 132 -136 .
[3] Quan Baoquan,Lü Ruizhou,Wang Guijiang,Ren Jiecheng. Effects of Different Cultivation Measures during Vegetative Propagation on Growth and Yield of Sweet Potato[J]. Crops, 2019, 35(3): 158 -161 .
[4] Lu Shouping,Zhang Hua,Meng Zhaodong,Mu Chunhua. Improvement of Grain Oil Content in Maize Inbred Lines by Molecular Markering Technology[J]. Crops, 2019, 35(3): 24 -28 .
[5] Zhang Ziqiang,Wang Liang,Bai Chen,Zhang Huizhong,Li Xiaodong,Fu Zengjuan,Zhao Shangmin,E Yuanyuan,Zhang Hui,Zhang Bizhou. Analysis on Main Agronomic Traits of 104 Sugarbeet Germplasm Resources[J]. Crops, 2019, 35(3): 29 -36 .
[6] Ma Mingchuan,Liu Longlong,Zhang Lijun,Cui Lin,Zhou Jianping. Morphological Identification and Analysis of EMS-Induced Mutants from Ciqiao[J]. Crops, 2019, 35(3): 37 -41 .
[7] Fan Huiling,Bai Shengwen,Zhu Xuefeng,Li Zhenzhou,Qin Minggang,He Zhijun. Difference of Salt-Alkaline Tolerance of Three Rape and Its Two Relatives at Germination Stage[J]. Crops, 2019, 35(3): 178 -184 .
[8] Ye Wenbin,He Yupeng,Wang Yu,Wang Han,Zhao Qingfang. Effects of Alkalized Olive Oil Processing Liquid Wastes on Seed Germination and Seedling Growth of Zea mays L.[J]. Crops, 2019, 35(3): 185 -191 .
[9] Wang Yonggang,Ji Mingze,Zhao Xuhan,Yu Lihe,Xue Yingwen. Effects of Sowing Dates on Yield of Baiyan 7 in Midwest of Heilongjiang Province[J]. Crops, 2019, 35(3): 106 -111 .
[10] Dong Zhe,Yang Wude,Zhang Meijun,Zhu Hongfen,Wang Chao. Estimation Models of Maize Leaf SPAD Value Based on Hyperspectral Remote Sensing[J]. Crops, 2019, 35(3): 126 -131 .