Crops ›› 2022, Vol. 38 ›› Issue (2): 28-34.doi: 10.16035/j.issn.1001-7283.2022.02.005

Previous Articles     Next Articles

Research Progress on Rice Protein and Its Components and Their Effects on Rice Quality

Lu Dandan(), Ye Miao, Zhang Zujian()   

  1. College of Agriculture, Yangzhou University/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu, China
  • Received:2021-09-26 Revised:2021-11-12 Online:2022-04-15 Published:2022-04-24
  • Contact: Zhang Zujian E-mail:2298482687@qq.com;zzj@yzu.edu.cn

Abstract:

Rice protein is an important factor determining its eating quality. Rice protein content is usually negatively correlated with rice eating quality. As a typical quantitative trait, rice protein content is greatly affected by environmental factors. However, the determining mechanisms of rice protein content and its components as well as their regulations by environmental factors are still unclear. The influencing mechanisms of rice protein on rice eating quality are also unclear. The types, structure, distribution, synthesis, accumulation process, genetic control and influencing factors of rice protein content were reviewed, and the research progress in the relationship of contents of rice protein and its components with rice quality was also summarized. The review provides a theoretical basis for selecting high-quality rice cultivars and optimizing cultivation techniques for rice production.

Key words: Rice, Protein content, Protein components, Eating quality, Protein synthesis, Environmental factors

[1] Kiyosumi H, Keitaro S, Ken I, et al. Variation in cooking and eating quality traits in Japanese rice germplasm accessions. Breeding Science, 2016, 66(2):309-318.
doi: 10.1270/jsbbs.66.309 pmid: 27162502
[2] Graeme B, Zhao J, Christopher B. Albumin significantly affects pasting and textural characteristics of rice flour. Cereal Chemistry, 2010, 87(3):250-255.
doi: 10.1094/CCHEM-87-3-0250
[3] Graeme B, Christopher B, Zhao J. Effects of glutelin and globulin on the physicochemical properties of rice starch and flour. Journal of Cereal Science, 2014, 60(2):414-420.
doi: 10.1016/j.jcs.2014.05.002
[4] 周丽慧, 刘巧泉, 张昌泉, 等. 水稻种子蛋白质含量及组分在品种间的变异与分布. 作物学报, 2009, 35(5):884-891.
[5] 王有伟, 苗燕妮, 江鹏, 等. 水稻产量、蛋白质及食味特性的关联研究. 中国农学通报, 2017, 33(5):1-5.
[6] 曲红岩, 张欣, 施利利, 等. 水稻食味品质主要影响因子分析. 江苏农业科学, 2017, 45(6):172-175.
[7] 胡培松. 功能性稻米研究与开发. 中国稻米, 2003(5):3-5.
[8] 李丽君, 刘传光, 周新桥, 等. 水稻蛋白质营养及其遗传改良研究现状. 广东农业科学, 2011, 38(17):7-10.
[9] 刘巧泉, 周丽慧, 王红梅, 等. 水稻种子贮藏蛋白合成的分子生物学研究进展. 分子植物育种, 2008(1):1-15.
[10] 蒋冬花, 杨宝峰, 叶砚, 等. 水稻种子贮藏蛋白总含量分布和多态性分析. 中国水稻科学, 2007, 21(6):673-676.
[11] Peter R S, Nigel G H. Cereal seed storage proteins:structures,properties and role in grain utilization. Journal of Experimental Botany, 2002, 53(370):947-958.
doi: 10.1093/jexbot/53.370.947
[12] 徐庆国, 童浩, 胡晋豪, 等. 稻米蛋白组分含量的品种差异及其与米质的关系. 湖南农业大学学报(自然科学版), 2015, 41(1):7-11,41.
[13] Yamagata H, Sugimoto T, Tanaka K, et al. Biosynthesis of storage proteins in developing rice seeds. Plant Physiology, 1982, 70(4):1094-1100.
doi: 10.1104/pp.70.4.1094 pmid: 16662620
[14] Yamagata H, Tanaka K. The site of synthesis and accumulation of rice storage proteins. Plant and Cell Physiology, 1986, 27(1):135-145.
[15] Limas G G, Salinas M, Moneo I, et al. Purification and characterization of ten new rice NaCl-soluble proteins:identification of four protein-synthesis inhibitors and two immunoglobulin-binding proteins. Planta, 1990, 181(1):1-9.
doi: 10.1007/BF00202318 pmid: 24196668
[16] Shibasaki M, Suzuki S, Nemoto H, et al. Allergenicity and lymphocyte-stimulating property of rice protein. The Journal of Allergy and Clinical Immunology, 1979, 64(4):259-265.
doi: 10.1016/0091-6749(79)90141-6
[17] 郑彦坤, 曾德二, 魏和平, 等. 水稻胚乳组织的结构观察. 中国水稻科学, 2017, 31(1):91-98.
[18] Resurreccion A P, Juliano B O, Tanaka Y. Nutrient content and distribution in milling fractions of rice grain. Journal of the Science of Food and Agriculture, 1979, 30(5):475-481.
pmid: 470348
[19] 卢夏茹, 马启林, 杨俊. 水稻种子蛋白质突变体米粒内蛋白质的分布特性分析. 广东农业科学, 2015, 42(1):1-3,7.
[20] 周丽慧, 刘巧泉, 顾铭洪. 不同粒型稻米碾磨特性及蛋白质分布的比较. 作物学报, 2009, 35(2):317-323.
[21] Furukawa S, Mizuma T, Kiyokawa Y, et al. Distribution of storage proteins in low-glutelin rice seed determined using a fluorescent antibody. Journal of Bioscience and Bioengineering, 2003, 96(5):467-473.
pmid: 16233557
[22] 于国波. 水稻中四种蛋白质组分的研究进展. 黑龙江科技信息, 2009(5):99.
[23] Crofts A J, Washida H, Okita T W, et al. Targeting of proteins to endoplasmic reticulum-derived compartments in plants:the importance of RNA localization. Plant Physiology, 2004, 136(3):3414-3419.
doi: 10.1104/pp.104.048934
[24] Yasuda H, Hirose S, Kawakatsu T, et al. Overexpression of BiP has inhibitory effects on the accumulation of seed storage proteins in endosperm cells of rice. Plant and Cell Physiology, 2009, 50(8):1532-1543.
doi: 10.1093/pcp/pcp098
[25] Muntz K. Deposition of storage proteins. Plant Molecular Biology, 1998, 38(1/2):77-99.
doi: 10.1023/A:1006020208380
[26] 韦存虚, 蓝盛银, 徐珍秀. 水稻胚乳细胞发育中的蛋白体的形成. 作物学报, 2002, 28(5):591-594.
[27] 丁艳锋, 赵长华, 王强盛, 等. 穗肥施用时期对水稻籽粒中胚乳蛋白积累的影响. 作物学报, 2003, 29(4):606-609.
[28] Li X X, Okita T W. Accumulation of prolamines and glutelins during rice seed development:a quantitative evaluation. Plant and Cell Physiology, 1993, 34(3):385-390.
[29] Taek K W, Li X, Okita T W. Expression of storage protein multigene families in developing rice endosperm. Plant and Cell Physiology, 1993, 34(4):595-603.
[30] Shewry P R. Improving the protein content and composition of cereal grain. Cereal Science, 2007, 46(3):239-250.
doi: 10.1016/j.jcs.2007.06.006
[31] Yang Y H, Guo M, Sun S Y, et al. Natural variation of OsGluA 2 is involved in grain protein content regulation in rice. Nature Communications, 2019, 10(1):138-141.
doi: 10.1038/s41467-018-07860-0
[32] 鄢宝, 王岩, 高冠军, 等. 水稻糙米蛋白质含量QTL定位及上位性分析. 分子植物育种, 2012, 10(5):594-599.
[33] 毕京翠. 水稻蛋白质含量分析与四种蛋白组分的QTL定位. 南京:南京农业大学, 2006.
[34] Zheng L, Zhang W, Chen X. et al. Dynamic QTL analysis of rice protein content and protein index using recombinant inbred lines. Journal of Plant Biology, 2011, 54(5):321-328.
doi: 10.1007/s12374-011-9170-y
[35] Peng B, Kong H L, Li Y B, et al. OsAAP 6 functions as an important regulator of grain protein content and nutritional quality in rice. Nature Communications, 2014, 5(1):1298-1301.
[36] 石吕. 水稻精米蛋白质含量与稻米品质变化的关系. 扬州:扬州大学, 2017.
[37] 叶定池, 吴春赞, 林华, 等. 水稻产量构成因子与稻米品质性状的关系. 中国农学通报, 2006, 22(2):204-206.
[38] 陈书强, 薛菁芳, 潘国君, 等. 粳稻粒位间蛋白质及其组分与品质性状间的相关性研究. 中国粮油学报, 2015, 30(7):1-6,11.
[39] 潘国庆, 陈新红, 张安存, 等. 粳稻粒型与稻米品质相关关系的研究. 安徽农业科学, 2010, 38(8):3957-3959.
[40] 童浩. 稻米品质的品种差异及与淀粉酶和蛋白组分的关系. 长沙:湖南农业大学, 2014.
[41] 刘奇华, 蔡建, 刘敏, 等. 两个籼稻品种垩白对稻米蒸煮食味与营养品质的影响. 中国水稻科学, 2007, 21(3):327-330.
[42] 王鹏跃. 稻米蛋白质及组成对其蒸煮食味品质影响的研究. 杭州:浙江工商大学, 2016.
[43] 张启莉. 籼稻米蛋白质影响米饭蒸煮食味品质的研究. 成都:四川农业大学, 2012.
[44] 张欣, 施利利, 刘晓宇, 等. 不同施肥处理对水稻产量、食味品质及蛋白质组分的影响. 中国农学通报, 2010, 26(4):104-108.
[45] 杨静, 罗秋香, 钱春荣, 等. 氮素对稻米蛋白质组分含量及蒸煮食味品质的影响. 东北农业大学学报, 2006, 37(2):145-150.
[46] 陈莹莹. 江苏早熟晚粳品种稻米品质对氮肥的响应及其类型. 扬州:扬州大学, 2012.
[47] 王丹英, 章秀福, 朱智伟, 等. 食用稻米品质性状间的相关性分析. 作物学报, 2005, 31(8):1086-1091.
[48] Wakamatsu K I, Sasaki O, Uezono I, et al. Effect of the amount of nitrogen application on occurrence of white-back kernels during ripening of rice (Oryza sativa) under high-temperature conditions. Japanese Journal of Crop Science, 2008, 77(4):424-433.
doi: 10.1626/jcs.77.424
[49] 王琦. 粳稻蒸煮食味品质形成的理化基础研究. 南京:南京农业大学, 2016.
[50] 芮闯, 刘莹, 孙建平. 蛋白质与大米食味品质的相关性分析. 食品科技, 2012, 37(3):164-167,171.
[51] 张玉荣, 周显青, 杨兰兰. 大米食味品质评价方法的研究现状与展望. 中国粮油学报, 2009, 24(8):155-160.
[52] 陈凤莲, 贺殷媛, 管哲贤, 等. 基于组成成分和米饭质构性状的东北粳稻聚类分析. 中国粮油学报, 2020, 35(7):1-7.
[53] 王继馨, 张云江, 程爱华, 等. 水稻蛋白亚基含量对米饭食味的影响. 中国农学通报, 2008(1):89-92.
[54] 张欣, 施利利, 丁得亮, 等. 稻米蛋白质相关性状与RVA特征谱及食味品质的关系. 食品科技, 2014, 39(10):188-191.
[55] 吴洪恺, 刘世家, 江玲, 等. 稻米蛋白质组分及总蛋白质含量与淀粉RVA谱特征值的关系. 中国水稻科学, 2009, 23(4):421-426.
[56] 石吕, 张新月, 孙惠艳, 等. 不同类型水稻品种稻米蛋白质含量与蒸煮食味品质的关系及后期氮肥的效应. 中国水稻科学, 2019, 33(6):541-552.
[57] 韩展誉, 管弦悦, 赵倩, 等. 灌浆温度和氮肥及其互作效应对稻米贮藏蛋白组分的影响. 作物学报, 2020, 46(7):1087-1098.
doi: 10.3724/SP.J.1006.2020.92062
[58] 张春红, 李金州, 田孟祥, 等. 不同食味粳稻品种稻米蛋白质相关性状与食味的关系. 江苏农业学报, 2010, 26(6):1126-1132.
[59] 钱春荣, 冯延江, 杨静, 等. 水稻籽粒蛋白质含量选择对杂种早代蒸煮食味品质的影响. 中国水稻科学, 2007, 21(3):323-326.
[60] 廖江林, 肖国樱, 李阳生, 等. 我国功能营养稻研究进展及发展对策. 农业现代化研究, 2003(3):170-173.
[61] 江良荣, 李义珍, 王侯聪, 等. 稻米营养品质的研究现状及分子改良途径. 分子植物育种, 2004(1):112-120.
[62] 陈汉生, 吴平理, 高泉荪, 等. 关于稻米蛋白质的氨基酸含量研究. 种子, 1986(4):13-19.
[63] 何莹. 水稻谷蛋白的质谱和Western Blot鉴定与贮藏蛋白分析. 武汉:武汉大学, 2010.
[64] 郑旭川. 灌浆结实期高温弱光对水稻籽粒蛋白质代谢关键酶活性及氨基酸组分的影响. 成都:四川农业大学, 2009.
[65] 梁成刚, 陈利平, 汪燕, 等. 高温对水稻灌浆期籽粒氮代谢关键酶活性及蛋白质含量的影响. 中国水稻科学, 2010, 24(4):398-402.
[66] 张桂莲, 张顺堂, 王力, 等. 抽穗结实期不同时段高温对稻米品质的影响. 中国农业科学, 2013, 46(14):2869-2879.
[67] 曹云英. 高温对水稻产量与品质的影响及其生理机制. 扬州:扬州大学, 2009.
[68] 韦克苏. 花后高温对水稻胚乳淀粉合成与蛋白积累的影响机理. 杭州:浙江大学, 2012.
[69] 马启林, 李阳生, 田小海, 等. 高温胁迫对水稻贮藏蛋白质的组成和积累形态的影响. 中国农业科学, 2009, 42(2):714-718.
[70] 陆佳岚, 马成, 陶明煊, 等. 不同光温条件对水稻9311产量及品质的影响. 江苏农业学报, 2020, 36(3):535-543.
[71] 许光利, 刘佳, 梁成刚, 等. 灌浆结实期弱光对水稻籽粒氮代谢酶及蛋白质含量的影响. 浙江大学学报(农业与生命科学版), 2016, 42(1):53-62.
[72] 董明辉, 惠锋, 顾俊荣, 等. 灌浆期不同光强对水稻不同粒位籽粒品质的影响. 中国生态农业学报, 2013, 21(2):164-170.
[73] 刘奇华, 李天, 蔡建, 等. 不同生育期遮光对水稻籽粒直链淀粉及蛋白质含量的影响. 中国农学通报, 2006, 22(8):234-237.
[74] 景立权, 户少武, 穆海蓉, 等. 大气环境变化导致水稻品质总体变劣. 中国农业科学, 2018, 51(13):2462-2475.
[75] Jing L Q, Wang J, Shen S B, et al. The impact of elevated CO2 and temperature on grain quality of rice grown under open-air field conditions. Journal of the Science of Food and Agriculture, 2016, 96(11):3658-3667.
doi: 10.1002/jsfa.7545
[76] 谢立勇, 马占云, 韩雪, 等. CO2浓度与温度增高对水稻品质的影响. 东北农业大学学报, 2009, 40(3):1-6.
[77] 乔江方. 氮素对稻米外观品质的影响及其碳氮代谢基础研究. 南京:南京农业大学, 2011.
[78] 朱永波, 韩展誉, 程方民. 氮肥对水稻营养品质、外观品质和加工品质的影响. 基层农技推广, 2019(12):26-29.
[79] 兰艳, 黄曌, 隋晓东, 等. 施氮量对低谷蛋白水稻产量及品质的影响. 华南农业大学学报, 2019, 40(4):8-15.
[80] 耿春苗. 氮肥及播期对低谷蛋白水稻产量和品质形成的影响. 南京:南京农业大学, 2011.
[81] 邱才飞, 彭春瑞, 邵彩虹. 施肥技术对不同早稻品种的产量及稻米蛋白质的影响. 中国稻米, 2009(6):43-45.
[82] 张其芳, 刘奎刚, 苏达, 等. 氮素和水分处理对稻米植酸含量和蛋白组分的影响. 植物营养与肥料学报, 2012, 18(3):542-550.
[83] 董作珍, 吴良欢, 柴婕, 等. 不同氮磷钾处理对中浙优1号水稻产量、品质、养分吸收利用及经济效益的影响. 中国水稻科学, 2015, 29(4):399-407.
[84] 王伟妮, 鲁剑巍, 何予卿, 等. 氮、磷、钾肥对水稻产量、品质及养分吸收利用的影响. 中国水稻科学, 2011, 25(6):645-653.
[85] 王成瑷, 张文香, 赵磊, 等. 氮磷钾肥料用量对水稻产量与品质的影响. 吉林农业科学, 2010, 35(1):28-33.
[86] 周婵婵, 黄元财, 贾宝艳, 等. 施氮量和灌溉方式的交互作用对东北粳稻稻米品质的影响. 中国水稻科学, 2019, 33(4):357-367.
[87] 张自常, 李鸿伟, 陈婷婷, 等. 畦沟灌溉和干湿交替灌溉对水稻产量与品质的影响. 中国农业科学, 2011, 44(24):4988-4998.
[88] 蔡一霞, 王维, 朱庆森. 水分胁迫对水稻籽粒蛋白质积累及营养品质的影响. 植物生态学报, 2007, 31(3):536-543.
doi: 10.17521/cjpe.2007.0067
[89] 李国生, 王志琴, 袁莉民, 等. 结实期土壤水分和氮素营养对水稻产量与品质的交互影响. 中国水稻科学, 2008, 22(2):161-166.
[90] 胡雅杰, 吴培, 邢志鹏, 等. 机插方式和密度对水稻主要品质性状及淀粉RVA谱特征的影响. 扬州大学学报(农业与生命科学版), 2017, 38(3):73-82.
[91] 荆爱霞. 移栽行距、 密度对水稻超高产形成的影响. 扬州:扬州大学, 2008.
[92] 程效义, 徐海, 马作斌, 等. 施氮量与栽插密度对粳稻稻米品质的影响. 杂交水稻, 2011, 26(5):77-80.
[93] 陈于敏, 世荣, 韩蕊, 等. 施氮量和栽插密度对‘云粳30号’产量和品质的影响. 西南农业学报, 2014, 27(4):1419-1423.
[94] 徐春梅, 王丹英, 邵国胜, 等. 施氮量和栽插密度对超高产水稻中早22产量和品质的影响. 中国水稻科学, 2008, 22(5):507-512.
[95] 季红娟, 董长生, 赵步洪, 等. 播期和栽插密度对水稻扬粳805产量与品质的影响. 扬州大学学报(农业与生命科学版), 2018, 39(2):10-15.
[96] 赵庆勇, 朱镇, 张亚东, 等. 播期和地点对不同生态类型粳稻稻米品质性状的影响. 中国水稻科学, 2013, 27(3):297-304.
[1] Cheng Dayu, Liu Kun, Gao Jie, Zhang Xingyu, Gu Xi, Liu Lijun. Research Progress on the Effects of Nutrient and Water Management on Rice Fragrance [J]. Crops, 2022, 38(2): 22-27.
[2] Han Lijun, Xue Zhangyi, Xie Hao, Gu Junfei. Effects of Dry-Wet Alternate Irrigation and Nitrification Inhibitor on Rice Yield and Soil Properties [J]. Crops, 2022, 38(2): 222-229.
[3] Liu Menghong, Wang Zhijun, Li Hongyu, Zhao Haicheng, Lü Yandong. Effects of Fertilization Method and Nitrogen Application Rate on Yield, Quality and Nitrogen Utilization of Rice in Cold Region [J]. Crops, 2022, 38(1): 102-109.
[4] Liu Lei, Song Nana, Qi Xiaoli, Cui Kehui. Research Advances on the Relationship between Root Characteristics and Nitrogen Uptake and Utilization Efficiency in Rice [J]. Crops, 2022, 38(1): 11-19.
[5] He Yuxuan, Li Yajuan, Zhou Mingzhuo, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Calcium Peroxide Application on Yield and Greenhouse Gas Emissions under Full-Rate Straw Returning in a Double Rice-Cropping System [J]. Crops, 2022, 38(1): 116-123.
[6] Long Ruiping, Zhang Chaozhong, Ge Qinying, Wan Weidong, Wang Qin, Li Guiyong, Xia Qiongmei, Zhu Haiping, Yang Congdang. Analysis of Growth Characteristics and Economic Benefit of Mechanical Transplanted Japonica Rice with Applying Panicle Nitrogen under Rotation of Paddy-Upland [J]. Crops, 2022, 38(1): 124-129.
[7] Cui Shiyou, Zhang Yang, Zhai Caijiao, Dong Shiqi, Zhang Jiao, Chen Pengjun, Han Jijun, Dai Qigen. Performance of Yield and Quality of Japonica Rice under Brackish Water Irrigation on the Reclaimed Tidal Flat [J]. Crops, 2022, 38(1): 137-141.
[8] Xie Huimin, Wu Ke, Liu Wenqi, Wei Guoliang, Lu Xian, Li Zhuanglin, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Partial Substitution of Seaweed Fertilizers and Microbial Inoculant for Chemical Fertilizer on Rice Yield and Its Components [J]. Crops, 2022, 38(1): 161-166.
[9] Duan Liuying, Wu Ting, Li Xia, Xie Jiankun, Hu Biaolin. Progress on Cytoplasmic Male Sterility and Fertility Restoration Genes in Rice [J]. Crops, 2022, 38(1): 20-30.
[10] Li Runqing, Shen Yong, Zhu Kuanyu, Wang Zhiqin, Yang Jianchang. Effects of Nitrogen Application Rates on the Grain Yield, Starch RVA Profile Characteristics and Physicochemical Properties of Super Rice Nanjing 9108 [J]. Crops, 2022, 38(1): 205-212.
[11] Tang Gang, Liao Ping, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Moldboard Plow Tillage under all Straw Returning in Late Rice Season on Greenhouse Gas Emissions and Yield in Double Rice-Cropping System [J]. Crops, 2021, 37(6): 101-107.
[12] Zhou Qiancong, Chen Le, Luo Kang, Liu Mengjie, Song Yongping, Xie Xiaobing, Zeng Yongjun. Effects of Nitrogen Panicle Fertilizer Management on Yield and Quality of Hybrid Late Japonica Rice [J]. Crops, 2021, 37(6): 129-133.
[13] Wang Qi, Li Meijuan, Zhang Jia’en, Tang Jiaxin, Zeng Wenjing, Zhou Lei, Yang Qingxin, Jiang Mingmin, Wu Jiayuan, Luo Mingzhu. Effects of Rice-Fish Co-Culture on Chlorophyll Fluorescence Characteristics and Yield in Rice [J]. Crops, 2021, 37(6): 145-151.
[14] Li Yang, Yang Xiaolong, Wang Benfu, Zhang Zhisheng, Chen Shaoyu, Li Jinlan, Cheng Jianping. Effects of Main Season Stubble Height on Ratoon Season Yield and Rice Quality [J]. Crops, 2021, 37(6): 164-170.
[15] Li Maosen, Gao Weikai, Ren Tianbao, Jiang Shixiang, He Xiaoya, Luo Leqin, Yun Fei, Ke Xiaoting. Analysis of Bacterial Community and Influencing Factors in Tobacco Soil at Different Altitudes in Zunyi [J]. Crops, 2021, 37(6): 193-198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!