Crops ›› 2023, Vol. 39 ›› Issue (1): 184-189.doi: 10.16035/j.issn.1001-7283.2023.01.027

Previous Articles     Next Articles

Effects of Drought Stress on Growth, Yield and Benefits of Kenaf in Vigorous Growing Period

Zhang Lixia1(), Guo Xiaoyan1, Shi Pengfei1, Nie Liangpeng1, Ling Jingwei1, Shen Peilin2, Ding Li1, Zhang Lin1, Lü Yuhu1, Pan Ziliang1()   

  1. 1Xinyang Academy of Agricultural Sciences, Xinyang 464000, Henan, China
    2Agricultural and Rural Bureau of Gushi County, Gushi 465200, Henan, China
  • Received:2021-10-21 Revised:2022-01-04 Online:2023-02-15 Published:2023-02-22

Abstract:

In order to explore the effects of drought stress on kenaf growth and yield, and find the optimal critical value of water-saving irrigation, the effects of water stress on growth and yield of kenaf was studied in Zahong 992. The effects of different drought stress conditions on the growth indexes (leaf number, plant height, stem diameter and aboveground dry matter weight), yield and economic benefits of kenaf were studied by pot water control method. The results showed that drought stress significantly reduced the growth of kenaf and slowed down the growth rate of kenaf, and the increase of decreasing range was positively correlated with stress intensity and time. Kenaf after drought stress will undergo compensatory growth after rehydration. Compared to normal irrigation, short (five days) drought stress of mild (60%-65% soil moisture content) or moderate (40%- 45% soil moisture content) could save 45%-73% water. Moreover, the yield of kenaf can be increased by 8%-14%, and the comprehensive economic benefit could be increased by 2445-3729 yuan/ha. However, severe (20%-25% soil water content) or long-term (> 15 days) drought stress reduced the compensation effects and even caused injury. So, the soil water content accounting for 40%-45% of the maximum field water capacity was determined as the water critical index for the long-term increase of yield and efficiency.

Key words: Drought stress, Kenaf, Growth, Yield

Fig.1

Growth appearance of kenaf in different drought stress groups on the 15th day of drought stress"

Table 1

Growth and development of kenaf under different treatments"

处理
Treatment
生长指标
Growth index
干旱胁迫时间Drought stress time (d)
0 5 10 15 20
CK 叶片数Leaf number 14.33±0.88a 17.33±0.88a 22.67±0.88ab 27.00±1.15a 30.67±0.88a
株高Plant height (cm) 60.11±2.38a 66.68±2.43a 84.94±2.43a 99.20±3.04a 111.96±2.60a
茎粗Stem diameter (mm) 5.50±0.17a 6.91±0.18a 8.12±0.20a 9.46±0.37a 10.01±0.33a
地上干物质重Aboveground dry matter weight (g) 3.49±0.30a 7.41±1.99a 10.97±1.96a 15.44±1.89a 19.43±3.44a
LS 叶片数Leaf number 14.67±0.33a 17.33±0.88a 23.33±1.20a 26.67±1.33a 30.33±1.20a
株高Plant height (cm) 62.04±1.93a 68.05±1.96a 81.97±2.12ab 93.78±2.63a 99.96±3.87ab
茎粗Stem diameter (mm) 5.57±0.16a 6.54±0.17b 7.58±0.21b 8.70±0.28a 9.11±0.44ab
地上干物质重Aboveground dry matter weight (g) 3.21±0.23a 4.87±0.98b 8.12±0.98b 14.61±4.38a 17.26±0.38b
MS 叶片数Leaf number 13.67±0.67a 15.33±0.33a 19.33±0.88bc 21.33±0.88b 24.50±0.29b
株高Plant height (cm) 63.81±1.73a 66.88±1.91a 74.43±2.07b 80.10±2.90b 87.54±4.12b
茎粗Stem diameter (mm) 5.84±0.12a 6.17±0.12c 6.96±0.16c 7.68±0.19b 8.43±0.23b
地上干物质重Aboveground dry matter weight (g) 3.10±0.24a 3.95±0.90b 7.57±1.74b 12.32±3.66b 12.72±0.32c
SS 叶片数Leaf number 15.00±0.58a 16.67±0.00a 17.00±0.58c 17.67±0.33b 18.33±0.00c
株高Plant height (cm) 63.21±1.64a 63.91±1.55a 65.42±1.60c 66.04±2.01c 65.63±2.52c
茎粗Stem diameter (mm) 5.87±0.15a 6.01±0.13c 6.30±0.15d 6.53±0.21c 6.40±0.24c
地上干物质重Aboveground dry matter weight (g) 3.05±0.33a 3.15±0.66b 5.24±0.34c 6.52±1.08c 5.67±0.77d

Fig.2

Growth rate of main characters of kenaf under different treatments Different lowercase letters indicate significant difference under the different stress time of the same stress degree (P < 0.05), different capital letters indicate significant difference under the different stress degree of the same stress time (P < 0.05)"

Fig.3

Increasement of main economic characters of kenaf at maturity"

Table 2

Economic benefits of different stress treatments"

胁迫时间
Stress
time (d)
处理
Treatment
灌水量
Irrigation
quantity
(m3/hm2)
产量
Yield
(kg/hm2)
经济效益
(元/hm2
Economic benefits
(yuan/hm2)
5 CK 1007.8±20.7 3584.1±180.9 24 484.2
LS 553.4±21.4 4077.9±211.0 28 213.4
MS 264.5±21.1 3869.7±152.5 26 929.2
SS 42.1±9.3 3445.9±194.2 24 096.4
10 CK 2347.7±58.5 3969.1±213.7 26 375.4
LS 1369.7±37.2 3961.8±88.3 26 911.1
MS 717.2±26.8 3877.4±122.5 26 711.3
SS 115.3±19.0 3110.7±87.3 21 706.0
15 CK 3113.0±54.7 3852.5±114.7 25 099.8
LS 1941.8±35.6 3575.8±92.6 23 865.8
MS 1028.9±24.3 3460.3±107.4 23 605.0
SS 239.0±21.2 2651.5±114.9 18 416.7
20 CK 3778.2±67.9 3686.7±64.7 23 539.8
LS 2452.5±27.7 3077.6±152.0 20 071.4
MS 1300.1±21.6 2507.9±149.9 16 775.5
SS 309.9±25.1 1953.0±179.4 13 484.9
[1] 熊和平. 2014-2015国家麻类产业技术发展报告. 北京: 中国农业科学技术出版社, 2016:4-5.
[2] 祁建民, 刘国忠. 黄麻红麻品种与高效配套技术. 北京: 台海出版社, 2007.
[3] 冯海燕, 习金根. 不同水分胁迫对剑麻生理特性的影响. 安徽农业科学, 2017, 45(19):13-15,33.
[4] 张智猛, 万书波, 戴良香, 等. 花生品种芽期抗旱性指标筛选与综合性评价. 中国农业科技导报, 2010, 12(1):85-91.
[5] 易亮. 豫南干旱气候特征及抗旱对策研究. 中国气象学会2008年年会干旱与减灾——第六届干旱气候变化与减灾学术研讨会分会场论文集, 2008.
[6] 揭雨成, 王朝云. 红麻水分胁迫及水肥效应研究. 中国麻业科学, 2000, 22(2):23-26,45.
[7] 王朝云, 揭雨成. 水分胁迫对红麻生理特性和产量的影响. 作物学报, 1995, 21(6):746-751.
[8] 金关荣, 安霞, 骆霞虹, 等. 红麻干旱响应基因EST-SSR标记. 分子植物育种, 2018, 16(14):4735-4742.
[9] 李辉, 李德芳, 邓勇, 等. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析. 作物学报, 2020, 46 (12):1914-1922.
doi: 10.3724/SP.J.1006.2020.04006
[10] 牛小平. 红麻苗期应答盐和干旱胁迫的HcffRKY17HcffRKY26功能分析. 福州:福建农林大学, 2016.
[11] 邓接楼, 张高阳, 张宗良, 等. 红麻转录因子基因HcNAC1的分离及其在干旱胁迫下的表达模式. 农业生物技术学报, 2021, 29(2):251-257.
[12] 李辉, 李德芳, 陈安国, 等. 盐和干旱胁迫下红麻HcWD40-1基因的克隆及表达特征. 农业生物技术学报, 2017, 25(12):1970-1978.
[13] 粟建光, 戴志刚. 红麻种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005:65-67.
[14] 胡小平, 王长发. SAS基础及统计实例教程. 西安: 西安地图出版社, 2001.
[15] 张爱民, 杨红, 耿广东. 干旱胁迫对辣椒幼苗形态指标的影响. 贵州农业科学, 2011, 39(10):54-56.
[16] He S X, Liang Z S, Yu L Z, et al. Growth and physiological characteristics of wild sour jujube seedlings from two provenances under soil water stress. Acta Botanica Boreali- Occidentalia Sinica, 2009, 29(7):1387-1393.
[17] 赵长星, 程曦, 王月福, 等. 不同生育时期干旱胁迫对花生生长发育和复水后补偿效应的影响. 中国油料作物学报, 2012, 34(6):627-632.
[18] 刘洪展, 郑伟, 郑风荣, 等. 复水对海水浇灌的玉米幼苗根系补偿效应的影响. 农业工程学报, 2012, 28(3):101-106.
[19] 郝树荣, 郭相平, 王文娟. 不同时期水分胁迫对玉米生长的后效性影响. 农业工程学报, 2010, 26(7):71-75.
[20] 薛惠云, 张永江, 刘连涛, 等. 干旱胁迫与复水对棉花叶片光谱、光合和荧光参数的影响. 中国农业科学, 2013, 46(11):2386-2393.
[21] 代红军. 干湿变化与植物补偿效应的生理机制研究. 安徽农业科学, 2007, 35(32):10222-10224.
[22] 梁鹏, 邢兴华, 周琴, 等. α-萘乙酸对干旱和复水处理下大豆幼苗生长和光合作用的影响. 大豆科学, 2011, 30(1):50-55.
[23] 郝树荣, 郭相平, 王为木, 等. 胁迫后复水对水稻叶面积的补偿效应. 灌溉排水学报, 2005, 24(4):19-21,32.
[24] 王利彬, 祖伟, 董守坤, 等. 干旱程度及时期对复水后大豆生长和代谢补偿效应的影响. 农业工程学报, 2015, 31(11):150-156.
[25] 俞世雄, 李芬, 李绍林, 等. 水分胁迫对小麦新品系叶绿素含量的影响. 云南农业大学学报, 2014, 29(3):353-358.
[26] 石必显, 林明, 顾元国, 等. 不同干旱胁迫对花生生长发育及产量的影响. 新疆农业科学, 2019, 56(3):422-429.
doi: 10.6048/j.issn.1001-4330.2019.03.004
[1] Xia Yuying, Wang Zhijun, Li Hongyu, Hu Chuanjun, Lü Yandong, Zhao Haicheng, Zheng Guiping. Effects of Seedling Raising Methods on Seedling Quality, Yield and Quality of Rice in Cold Region [J]. Crops, 2023, 39(1): 103-108.
[2] Gao Wei, Hao Qingting, Zhang Zeyan, Wang Qian, Yan Hubin, Zhu Huijun, Zhao Xueying, Zhang Yaowen. Effects of Nitrogen and Phosphorus Application on Yield, Root Morphology and Photosynthetic Characteristics of Adzuki Bean [J]. Crops, 2023, 39(1): 109-114.
[3] Wang Yujiao, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Shi Shubing, Zhao Guangcai. Effects of Sowing Methods on Yield and Quality of Different Varieties of Wheat [J]. Crops, 2023, 39(1): 122-128.
[4] Zhao Jingyun, Lü Xinyun, Liu Xiaorong, Ren Haihong, Ren Xiaojun, Ma Junkui. Effects of Strip Compound Intercropping under Young Walnut Forest on Soybean Growth and Yield [J]. Crops, 2023, 39(1): 136-142.
[5] Zhai Caijiao, Zhang Jiao, Cui Shiyou, Chen Pengjun, Han Jijun. Effects of Slow/Controlled Release Fertilizer Application on Growth, Yield and Quality of Rice under Salt Stress [J]. Crops, 2023, 39(1): 143-151.
[6] Li Wenshan, Zhang Junyao, Tang Jianghua, Xu Wenxiu, Xu Qinghua. Effects of Different Doses of AFD on Growth and Yield of Cotton [J]. Crops, 2023, 39(1): 158-162.
[7] Ma Ruiqi, Wang Demei, Tao Zhiqiang, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Effects of Nitrogen Application Rate on Yield and Quality of Weak Gluten Wheat in Northern Winter Wheat Region [J]. Crops, 2023, 39(1): 163-169.
[8] Jia Zhengrong, Hao Jiali, Hao Yanfang, Bai Wenbin, Zhang Jianhua, Guo Ruifeng, Liu Yong. Effects of Four Bacillus Species on Yield and Quality of Sweet Potato at Different Stages [J]. Crops, 2023, 39(1): 170-175.
[9] Su Cuicui, Wu Lingling, Zhao Xi, Shi Zhiguo, Zhou Yanfang, Wei Yujie. Effects of Sowing Date on the Growth, Quality and Yield of Safflower in Gansu Yellow River Irrigation Area [J]. Crops, 2023, 39(1): 176-183.
[10] Li Diqin, Yao Shaoyun, Wang Qing, Yi Ke, Liu Yiyun, Tang Xiaoming, Peng Yuanyuan, Fu Changwu. Effects of Different Nitrogen Sources on the Growth and Development of Tobacco Seedlings [J]. Crops, 2023, 39(1): 201-206.
[11] Jin Haiyang, Zhang Suyu, Cui Jingyu, Li Xiangdong, Yue Junqin, Zhang Deqi, Yang Cheng, Fang Baoting, Wang Hanfang, Qin Feng. Regulatory Effects of Different Nitrogen Management Methods on Quality of Strong and Medium-Strong Gluten Wheat [J]. Crops, 2023, 39(1): 212-218.
[12] Wang Yuan, Wang Jiming, Nian Fuzhao, Zheng Yuanxian, Xu Yinlian, Li Cuifen, Cui Yongquan, Zhang Qifu, Zhao Leifeng, Liao Xiaolin, He Yuansheng. Effects of Continuous Cropping with Rice Hull Biochar on Soil Physical and Chemical Properties and Growth of Flue-Cured Tobacco [J]. Crops, 2023, 39(1): 219-225.
[13] Wang Yanxun, Tian Jichun. Wide Adaptability Performance and Genetic Analysis of National Certified Wheat Variety Shannong 20 with High and Stable Yield [J]. Crops, 2023, 39(1): 46-51.
[14] Wang Qi, Xu Yanli, Yan Peng, Dong Haosheng, Zhang Wei, Lu Lin, Dong Zhiqiang. Effects of Polyaspartic Acid-Chitosan on Agronomic Traits, Yield and Nitrogen Use of Spring Foxtail Millet [J]. Crops, 2023, 39(1): 58-67.
[15] Kan Mingxi, Wang Yanjie, Yu Huiling, Wang Demei, Tao Zhiqiang, Yang Yushuang, Wang Yujiao, Gao Tiantian, Cao Qi, Zhao Guangcai, Chang Xuhong. Effects of Irrigation on Yield, Protein Content and Photosynthetic Performance of Water-Saving Wheat “Hengguan 35” [J]. Crops, 2023, 39(1): 68-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!