Crops ›› 2023, Vol. 39 ›› Issue (1): 96-102.doi: 10.16035/j.issn.1001-7283.2023.01.014

Previous Articles     Next Articles

Effects of Nitrate Nitrogen and Ammonium Nitrogen Ratio on the Growth and Nitrogen Utilization of Millet Seedlings

Fan Duanyang1(), Yin Meiqiang1(), Wen Yinyuan1(), Guo Zhiyao1, Wen Yanjie1, Wang Yuqi1, Sun Min1,2, Gao Zhiqiang1,2   

  1. 1College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
    2Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-Quality and Effciency in Loess Plateau, Jinzhong 030801, Shanxi, China
  • Received:2022-07-11 Revised:2022-07-30 Online:2023-02-15 Published:2023-02-22

Abstract:

The study was carried out by pot experiment and irrigating nutrient solution with “Jingu 21” as the experimental materials. The experiment set five nitrogen form ratios based on the total nitrogen level (5mmol/L), which used nitrogen-free nutrient solution treatment as control. The effects of different nitrogen forms on millet seedling growth, key enzyme activities of nitrogen metabolism and nitrogen efficiency were analyzed. The results showed that, compared with the control, nitrogen application could significantly promote the growth of shoots and roots, key enzyme activities of nitrogen metabolism and nitrogen utilization of millet seedlings, and reached the maximum in the ammonium nitrate ratio 50%:50%. Compared with single application of nitrogen source, applying nitrate and ammonium mixed nitrogen sources significantly increased the growth of root and GOGAT activity in millet seedlings. Compared with the treatment of ammonium nitrogen ratio above 50%, the treatment of nitrate nitrogen ratio above 50% was more beneficial to the growth of shoots, NR and GS activities, nitrogen efficiency of millet seedlings. Comprehensive analysis of membership function showed that, the mixed nitrogen source was more beneficial to the growth of millet seedlings than the single nitrogen source, and the effect was the best under the ammonium nitrate ratio 50%:50%.

Key words: Millet seedlings, Nitrogen forms, Key enzyme activities of nitrogen metabolism, Nitrogen utilization

Fig.1

The phenotypic characteristics of millet seedlings with combined application of different forms of nitrogen"

Table 1

Effects of combined application of different forms of nitrogen on growth of millet seedlings"

处理
Treatment
株高
Plant height (cm)
茎粗
Stem diameter (mm)
叶面积
Leaf area (cm2)
地上部干重
Dry weight of shoot (g)
地下部干重
Dry weight of root (mg)
根冠比
Ratio of root to shoot
CK 5.48±0.31e 1.06±0.03e 1.07±0.09d 0.06±0.01d 16.08±1.20e 0.30±0.02a
T1 20.06±1.12c 1.73±0.14b 4.60±0.40bc 0.16±0.01bc 25.53±0.76c 0.16±0.00b
T2 22.12±1.15b 1.88±0.05a 5.39±0.36ab 0.20±0.01a 27.34±0.69ab 0.14±0.01b
T3 23.32±0.46a 1.87±0.08a 5.91±0.88a 0.20±0.01a 27.84±1.01a 0.14±0.00b
T4 19.02±0.25c 1.58±0.04c 4.20±0.44c 0.16±0.02b 26.10±1.21bc 0.16±0.02b
T5 17.42±0.32d 1.43±0.02d 4.23±0.72c 0.14±0.01c 23.91±1.34d 0.17±0.00b

Fig.2

The root of millet seedlings with combined application of different forms of nitrogen"

Table 2

Effects of combined application of different forms of nitrogen on root morphology of millet seedlings"

处理
Treatment
根长
Root length
(cm)
根投影面积
Projected area
of root (cm2)
根表面积
Surface area
of root (cm2)
根体积
Root volume
(cm3)
根平均直径
Average diameter
of root (mm)
根尖数
Number of
root tips
分枝数
Number of
forks
CK 176.56±5.39d 2.09±0.09d 6.57±0.28d 0.02±0.00d 0.12±0.00c 1504.00±60.34c 793.67±57.91d
T1 186.68±16.40d 2.43±0.20d 8.12±0.38c 0.03±0.01c 0.14±0.00b 1774.67±105.09b 1062.33±53.11c
T2 202.87±7.92c 2.96±023bc 9.62±0.40b 0.04±0.00b 0.15±0.01ab 1755.33±94.79b 1203.33±62.26b
T3 274.58±9.65a 4.04±0.33a 12.70±1.02a 0.05±0.00a 0.16±0.01a 2281.00±113.93a 1437.33±56.17a
T4 221.40±11.92b 3.11±0.50b 10.11±1.11b 0.03±0.00c 0.15±0.01ab 2146.67±121.43a 1275.33±76.93b
T5 184.93±5.14d 2.58±0.45cd 8.10±1.41c 0.03±0.00c 0.14±0.01b 1775.33±105.84b 997.00±68.17c

Fig.3

Effects of combined application of different forms of nitrogen on the enzyme activities of nitrogen metabolism in millet seedlings Different lowercase letters indicate significant difference at the 0.05 level, the same below"

Fig.4

Effects of combined application of different forms of nitrogen on the nitrogen utilization of millet seedlings"

Table 3

Subordination function values of the indexes of millet seedlings under the combined application of different forms of nitrogen"

处理Treatment CK T1 T2 T3 T4 T5
株高Plant height 0.00 0.82 0.93 1.00 0.76 0.67
茎粗Stem diameter 0.00 0.81 1.00 0.99 0.64 0.45
叶面积Leaf area 0.00 0.73 0.89 1.00 0.65 0.65
地上部干重Dry weight of shoot 0.00 0.73 1.00 1.00 0.77 0.62
地下部干重Dry weight of root 0.00 0.80 0.96 1.00 0.85 0.67
根冠比Ratio of root to shoot 1.00 0.14 0.00 0.02 0.13 0.18
根长Root length 0.00 0.10 0.27 1.00 0.46 0.09
根投影面积Projected area of root 0.00 0.18 0.44 1.00 0.52 0.25
根表面积Surface area of root 0.00 0.25 0.50 1.00 0.58 0.25
根体积Root volume 0.00 0.41 0.75 1.00 0.48 0.32
根平均直径Average diameter of root 0.00 0.66 0.71 1.00 0.88 0.61
根尖数Number of root tips 0.00 0.35 0.32 1.00 0.83 0.35
分枝数Number of forks 0.00 0.42 0.64 1.00 0.75 0.32
硝酸还原酶NR 0.00 0.41 0.59 1.00 0.45 0.19
谷氨酰胺合成酶GS 0.00 0.72 0.91 1.00 0.70 0.49
谷氨酸合成酶GOGAT 0.00 0.30 0.77 1.00 0.54 0.18
地上部氮含量Nitrogen content of shoot 0.00 0.78 0.95 1.00 0.68 0.51
地下部氮含量Nitrogen content of root 0.00 0.63 0.84 1.00 0.60 0.33
地上部氮素累积量Nitrogen accumulation of shoot 0.00 0.65 0.97 1.00 0.61 0.44
地下部氮素累积量Nitrogen accumulation of root 0.00 0.63 0.86 1.00 0.62 0.38
地上部氮素生理利用效率Physiological utilization efficiency of nitrogen on shoot 1.00 0.08 0.02 0.00 0.13 0.24
地下部氮素生理利用效率Physiological utilization efficiency of nitrogen on root 1.00 0.23 0.07 0.00 0.23 0.48
氮转运系数Nitrogen transport coefficient 0.00 1.00 0.91 0.76 0.76 0.93
平均值Average 0.13 0.51 0.67 0.86 0.59 0.42
顺序Order 6 4 2 1 3 5
[1] 孟祥馨悦, 刘丰, 崔宇婷, 等. 低氮条件下施用不同形态氮素对谷子幼苗叶片叶绿素荧光特性的影响. 华北农学报, 2017, 32(增1):272-278.
[2] Nadeem F, Ahmad Z, Wang R, et al. Foxtail millet [Setaria italica (L.) Beauv.] grown under low nitrogen shows a smaller root system,enhanced biomass accumulation,and nitrate transporter expression. Frontiers in Plant Science, 2018, 9:205.
doi: 10.3389/fpls.2018.00205
[3] 张燕, 张云秀, 吕雪梅, 等. NO3-缓解小麦NH4+胁迫的生理机制研究. 植物生理学报, 2021, 57(2):480-492.
[4] Ma X, Zhu C, Yang N, et al. γ-Aminobutyric acid addition alleviates ammonium toxicity by limiting ammonium accumulation in rice (Oryza sativa) seedlings. Physiologia Plantarum, 2016, 158(4):389-401.
doi: 10.1111/ppl.12473
[5] 熊淑萍. 氮素形态对三种专用型小麦氮效率影响机理研究. 郑州:河南农业大学, 2011.
[6] 徐胜光, 高召华, 林丽, 等. 氮素形态和光照强度对水稻表土及根际N2O排放的影响. 植物营养与肥料学报, 2016, 22(5):1319-1328.
[7] 乌凤章, 王贺新, 陈英敏, 等. 我国蓝莓生理生态研究进展. 北方园艺, 2006(3):48-49.
[8] 杜蕊, 张会慧, 田野, 等. 氮素形态对烟草叶片PSⅡ能量分配的影响. 湖北农业科学, 2014, 53(15):3520-3525.
[9] 王岚, 王伟, 黄承和, 等. 不同铵硝配比对香蕉幼苗硝态氮吸收动力学特征影响. 热带作物学报, 2012, 33(6):988-992.
[10] Kronzucker H J, Siddiqi M Y, Glass A D, et al. Nitrate- ammonium synergism in rice. A subcellular flux analysis. Plant Physiology, 1999, 119(3):1041-1045.
pmid: 10069842
[11] 李生秀. 中国旱地土壤植物氮素. 北京: 科学出版社, 2008.
[12] 苗艳芳, 李生秀, 徐晓峰, 等. 冬小麦对铵态氮和硝态氮的响应. 土壤学报, 2014, 51(3):564-574.
[13] 邹春琴, 范晓云, 石荣丽, 等. 铵态氮和硝态氮对旱稻、水稻生长及铁营养状况的影响. 中国农业大学学报, 2007, 12(4):45-49.
[14] 裴文梅, 张参俊, 王景安. 不同氮形态及配比对甘草生长及品质的影响. 中国农学通报, 2011, 27(28):184-187.
[15] 戴廷波, 曹卫星, 孙传范, 等. 增铵营养对小麦光合作用及硝酸还原酶和谷氨酰胺合成酶的影响. 应用生态学报, 2003, 14(9):1529-1532.
[16] 瞿宋林. 不同硝铵态氮供应配比对小麦生长的影响试验初报. 南方农业, 2020, 14(30):132-135.
[17] 张艾英, 郭二虎, 王军, 等. 施氮量对春谷农艺性状、光合特性和产量的影响. 中国农业科学, 2015, 48(15):2939-2951.
[18] 张蕙琪, 王宏富, 王彦雯. 氮磷钾配施对谷子农艺性状及光合特性的影响. 山西农业科学, 2018, 46(1):42-49.
[19] 关瑞, 张民, 诸葛玉平, 等. 控释氮肥一次性基施提高谷子产量和氮素利用率. 植物营养与肥料学报, 2019, 25(4):639-646.
[20] 高俊凤. 植物生理学试验指导. 北京: 高等教育出版社, 2006:61-63.
[21] 张以顺, 黄霞, 陈云凤. 植物生理学试验教程. 北京: 高等教育出版社, 2009:85-86.
[22] Lin C C, Kao C H. Disturbed ammonium assimilation is associated with growth inhibition of roots in rice seedlings caused by NaCl. Plant Growth Regulation, 1996, 18(3):233-238.
doi: 10.1007/BF00024387
[23] 秦璐, 王建强, 韩配配, 等. 不同氮效率油菜种质苗期氮吸收转运与利用差异研究. 作物杂志, 2021(3):28-33.
[24] 邢瑶, 马兴华. 氮素形态对植物生长影响的研究进展. 中国农业科技导报, 2015, 17(2):109-117.
[25] 崔纪菡, 赵静, 孟建, 等. 铵态氮和硝态氮对谷子形态和生物量的影响研究. 中国农业科技导报, 2017, 19(10):66-72.
doi: 10.13304/j.nykjdb.2017.0097
[26] 崔纪菡, 刘猛, 赵宇, 等. 不同形态氮对谷子生长和氮利用的影响. 山东农业科学, 2021, 53(7):58-64.
[27] Schortemeyer M, Feil B, Stamp P. Root morphology and nitrogen uptake of maize simultaneously supplied with ammonium and nitrate in a split-root system. Annals of Botany, 1993, 72(2):107-115.
doi: 10.1006/anbo.1993.1087
[28] Tehryung K, Mills H, Wetzstein H. Studies on effects of nitrogen form on growth,development,and nutrient uptake in pecan. Journal of Plant Nutrition, 2002, 25(3):497-508.
doi: 10.1081/PLN-120003378
[29] 张树杰, 张春雷, 李玲, 等. 氮素形态对冬油菜幼苗生长的影响. 中国油料作物学报, 2011, 33(6):567-573.
[30] 唐伟杰. 不同硝铵比对油菜生长、生理与基因表达的影响. 长沙:湖南农业大学, 2019.
[31] 张婧. 铵硝氮素比例影响辣椒生长与果实代谢的机理研究. 兰州:甘肃农业大学, 2020.
[32] Guo J, Jia Y, Chen H, et al. Growth,photosynthesis,and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Scientific Reports, 2019, 9(1):1248.
doi: 10.1038/s41598-018-37838-3
[33] Ou X, Li S, Liao P, et al. The transcriptome variations of Panaxnotoginseng roots treated with different forms of nitrogen fertilizers. BMC Genomics, 2019, 20(9):965.
doi: 10.1186/s12864-019-6340-7
[34] 卢丽兰, 杨新全, 王彩霞, 等. 不同硝铵比氮素供应对广藿香生长及药效成分的影响. 植物营养与肥料学报, 2017, 23(5):1314-1325.
[35] 曹翠玲, 李生秀. 氮素形态对作物生理特性及生长的影响. 华中农业大学学报, 2004(5):581-586.
[36] Munn D A, Jackson W A. Nitrate and ammonium up-take by rooted cuttings of sweet potato. Agronomy Journal, 1978, 70(2):312-316.
doi: 10.2134/agronj1978.00021962007000020023x
[37] 王小纯, 程振云, 何建国, 等. 不同氮素形态对专用小麦苗期氨同化关键酶活性的影响. 麦类作物学报, 2008, 28(5):836-840.
[38] 徐国伟, 江孟孟, 陆大克, 等. 干湿交替灌溉与氮肥形态耦合对水稻光合特性及氮素利用的影响. 植物营养与肥料学报, 2020, 26(7):1239-1250.
[39] 肖凯, 张树华, 邹定辉, 等. 不同形态氮素营养对小麦光合特性的影响. 作物学报, 2000, 26(1):53-58.
[40] Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal, 1982, 74(3):562-564.
doi: 10.2134/agronj1982.00021962007400030037x
[1] Liu Menghong, Wang Zhijun, Li Hongyu, Zhao Haicheng, Lü Yandong. Effects of Fertilization Method and Nitrogen Application Rate on Yield, Quality and Nitrogen Utilization of Rice in Cold Region [J]. Crops, 2022, 38(1): 102-109.
[2] Wang Qingbin, Nie Zhentian, Lu Jiechun, Peng Chun’e, Zhang Min, Meng Hui, Liu Zhiguo, Geng Quanzheng. Effects of Paecilomyces variotii Extract on Yield and Nitrogen Utilization of Summer Maize [J]. Crops, 2021, 37(4): 166-171.
[3] Liu Akang, Wang Demei, Wang Yanjie, Yang Yushuang, Ma Ruiqi, Gao Tiantian, Wang Yujiao, Kan Mingxi, Zhao Guangcai, Chang Xuhong. Effects of Seedling Regulation on Yield and Nitrogen Utilization of Late Sowing Wheat [J]. Crops, 2021, 37(2): 116-123.
[4] Cui Yuefeng,Sun Guocai,Lu Tiegang,Wang Guiyan,Wang Jian,Huang Wenjia,Luan Helin. Effects of Different Straw Return Modes on Nitrogen Absorption and Utilization of Super Rice in Northern China [J]. Crops, 2019, 35(4): 164-169.
[5] Chunxi Li,Lingling Zhang,Shouchen Ma,Yun Shao,Huiting Chen,Jingruo Wang. Effects of Organic Materials Returning on Soil Carbon and Nitrogen Contents,Yield and Economic Benefit in Wheat [J]. Crops, 2017, 33(2): 145-150.
[6] Qianxu Zhao,Xianrong Yue,Yunsheng Xia,Naiming Zhang,Fuzhao Nian,Yunqiang Yang,Yulin Ma. Effects of Arbuscular Mycorrhizal Fungus Inoculation on Growth and Nitrogen Utilization of Intercropped Maize and Soybean in Purple Soil under Facilitated Condition [J]. Crops, 2016, 32(5): 94-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!