Crops ›› 2021, Vol. 37 ›› Issue (2): 116-123.doi: 10.16035/j.issn.1001-7283.2021.02.016

;

Previous Articles     Next Articles

Effects of Seedling Regulation on Yield and Nitrogen Utilization of Late Sowing Wheat

Liu Akang(), Wang Demei, Wang Yanjie, Yang Yushuang, Ma Ruiqi, Gao Tiantian, Wang Yujiao, Kan Mingxi, Zhao Guangcai, Chang Xuhong()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology & Ecology, Ministry of Agricultural and Rural Affairs, Beijing 100081, China
  • Received:2020-11-25 Revised:2021-01-20 Online:2021-04-15 Published:2021-04-16
  • Contact: Chang Xuhong E-mail:liuakang1115@163.com;changxuhong@caas.cn

Abstract:

The experiment was conducted to solve the problem of winter wheat yield loss due to delayed sowing date. Zhongmai 8 and Hangmai 501 with different tillering abilities were used as the test materials to study the effects of plastic film mulching supplementing nitrogen fertilizer at seedling stage on the yield and nitrogen utilization of late-sowing wheat. Three sowing dates were set up in the experiment, sowing at 5th October as an appropriate date (S0, CK), 15th October as late sowing (S1), and 25th October as later sowing (S2). The results showed that the wheat yield gradually decreased with the sowing date delayed. Under the condition of late sowing, film mulching and supplementing nitrogen fertilizer at seedling stage could regulate winter wheat yield components, agronomic characteristics, stem and tiller growth, spike rate, and nitrogen absorption and utilization. Under the condition of late sowing, film mulching and supplementing nitrogen fertilizer were beneficial to increase spike length, spikelet number, and populations of wheat before winter. At the same time, mulching could significantly increase the spike rate of the tiller, plant nitrogen accumulation (PNA), and partial factor productivity (PFP) under the condition of late sowing by 46.4%-89.1%, 12.7%-26.5%, and 19.5%-20.1%, respectively. Under the condition of later sowing, supplementing nitrogen fertilizer could also increase the spike rate by 18.5%-34.7%. Both regulation measures were beneficial to increase the yield of late-sowing wheat by 1.4%-19.5%. However, there were differences between Zhongmai 8 and Hangmai 501 in response to the two regulation measures. Considering various factors such as yield and nitrogen utilization, under the condition of late sowing, film mulching at seedling stage was more effective to increase the yield and make up for the yield loss caused by late sowing compared with supplementing nitrogen fertilizer. However, in terms of practical operation and saving production costs, the former is better than the latter.

Key words: Late-sowing, Wheat, Film mulching, Nitrogen fertilizer, Yield, Nitrogen utilization

Fig.1

Mean monthly temperature in the field in 2019-2020"

Table 1

Nutrient conditions of different soil layers"

土层
Soil layer
(cm)
有机质
Organic matter
(g/kg)
碱解氮Nitrogen hydrolysis
(mg/kg)
有效磷Available phosphorus
(mg/kg)
速效钾Available potassium
(mg/kg)
pH值
pH
value
0~20 11.6 124.4 12.5 181 7.8
20~40 10.9 127.2 13.3 154 7.9

Table 2

Detailed treatments of experiment"

处理Treatment 播种日期
Sowing date
调控措施
Regulation measure
S0 10月5日(适期播种)
S1 10月15日(适当晚播)
S1F 10月15日(适当晚播) 苗期覆膜:连续3d日均温<0℃始,>5℃止
S1N 10月15日(适当晚播) 补施氮肥:11月中旬小麦缓慢生长时
S2 10月25日(过晚播)
S2F 10月25日(过晚播) 苗期覆膜:连续3d日均温<0℃始,>5℃止
S2N 10月25日(过晚播) 补施氮肥:11月中旬小麦缓慢生长时

Fig.2

The accumulated temperature more than 0℃ of different treatments at seedling stage(from sowing to the end of mulching)"

Table 3

The response of wheat yield and components to regulation measures under late sowing"

品种
Cultivar
处理
Treatment
千粒重
1000-grain
weight(g)
穗粒数
Grain per
spike
穗数
Spike number
(×104/hm2)
产量
Grain yield
(kg/hm2)
中麦8号 S1 39.4abc 41.4bcd 837.9a 10179.9a
Zhongmai 8 S1F 41.5a 43.6ab 642.6b 10414.3a
S1N 37.6cd 46.9ab 686.7b 10321.7a
S2 37.1d 34.9d 718.2b 7833.2c
S2F 40.1ab 50.1a 686.7b 9363.9b
S2N 39.0bcd 36.6cd 655.2b 8767.8b
S0 39.6abc 42.4bc 730.8b 10220.4a
航麦501 S1 53.1a 52.9bc 567.0b 9705.5ab
Hangmai 501 S1F 49.8c 67.8a 648.0ab 10353.5a
S1N 52.2ab 48.3cd 639.0ab 9901.5a
S2 51.5abc 42.3d 693.0ab 8455.8c
S2F 50.3bc 56.0b 612.0ab 10156.8a
S2N 51.2abc 51.6bc 756.0a 8927.0bc
S0 51.8abc 46.4cd 711.0ab 10232.0a

Table 4

The response of wheat agronomic traits to regulation measures under different sowing dates"

品种
Cultivar
处理
Treatment
株高
Plant
height
(cm)
穗长
Spike
length
(cm)
总小穗数
Total
spikelet
number
不孕小穗数
Infertile
spikelet
number
中麦8号 S1 78.33bc 9.50b 18.35bc 0.90ab
Zhongmai 8 S1F 81.05b 9.48b 20.80a 1.65a
S1N 74.29d 9.56ab 18.58bc 0.27b
S2 69.87e 8.55c 16.75d 1.45ab
S2F 77.31cd 9.95a 20.67a 0.53ab
S2N 70.07e 8.91c 18.00c 1.07ab
S0 86.28a 9.87ab 19.19b 1.16ab
航麦501 S1 79.99ab 8.78c 20.73b 1.60ab
Hangmai 501 S1F 76.97bc 10.02a 24.08a 0.96b
S1N 76.24c 8.85c 21.05b 2.60a
S2 62.82e 7.79d 19.33c 2.60a
S2F 76.25c 9.48b 23.87a 2.33a
S2N 72.47d 8.52c 20.30b 1.50ab
S0 81.10a 8.79c 21.01b 2.48a

Fig.3

Tiller number of different treatments at different growth stages TS: Tillering period before overwintering; WS: Overwintering period; RS: Reviving stage; JS: Jointing stage; HS: Heading stage; MS: Maturity stage"

Fig.4

Effects of different treatments on spike rate"

Table 5

Nitrogen absorption and utilization of wheat under different regulation measures"

品种
Cultivar
处理
Treatment
植株氮素积累量
PNA (kg/hm2)
氮素籽粒生产效率
NGPE (kg/kg)
氮肥偏生产力
PFP (kg/kg)
氮素收获指数
NHI
中麦8号 S1 333.89b 30.52c 37.70a 0.63c
Zhongmai 8 S1F 255.93de 40.68a 38.57a 0.85a
S1N 286.84c 35.99b 32.77b 0.73b
S2 215.90f 36.28b 29.01c 0.70b
S2F 273.07cd 34.36b 34.68b 0.72b
S2N 244.76e 35.85b 27.83c 0.74b
S0 365.66a 27.95d 37.85a 0.57d
航麦501 S1 315.88c 30.70ab 35.95a 0.65b
Hangmai 501 S1F 430.97a 24.01c 38.35a 0.58c
S1N 394.18b 25.14c 31.43b 0.58c
S2 257.90d 32.80a 31.32b 0.70a
S2F 313.88c 32.40a 37.62a 0.72a
S2N 308.36c 29.02b 28.34c 0.63b
S0 418.47a 24.49c 37.90a 0.55c
[1] Justes E, Thiébeau P, Avice J C, et al. Influence of summer sowing dates,N fertilization and irrigation on autumn VSP accumulation and dynamics of spring regrowth in alfalfa (Medicago sativa L.). Journal of Experimental Botany, 2002,53(366):111-121.
[2] Bassu S, Asseng S, Motzo R, et al. Optimising sowing date of durum wheat in a variable Mediterranean environment. Field Crops Research, 2009,111(1/2):109-118.
[3] 江东国, 黄正来, 张文静, 等. 晚播条件下施氮量对稻茬小麦氮素吸收及产量的影响. 麦类作物学报, 2019,39(10):1211-1221.
[4] 李欣欣, 石祖梁, 王久臣, 等. 施氮量和种植密度对稻茬晚播小麦干物质积累及光合特性的影响. 华北农学报, 2020,35(5):140-148.
[5] 李华英, 代兴龙, 张宇, 等. 播期对冬小麦产量和抗倒性能的影响. 麦类作物学报, 2015,35(3):357-362.
[6] 董红霞, 曹建明. 极晚播小麦冬季地膜覆盖技术. 农业技术与装备, 2019(12):106-107.
[7] 江东国, 黄正来, 张文静, 等. 晚播条件下施氮量对稻茬小麦氮素吸收及产量的影响. 麦类作物学报, 2019,39(10):1211-1221.
[8] 马溶慧, 朱云集, 郭天财, 等. 国麦1号播期播量对群体发育及产量的影响. 山东农业科学, 2004(4):12-15.
[9] Oteros J, García-Mozo H, Botey R, et al. Variations in cereal crop phenology in Spain over the last twenty-six years (1986-2012). Climatic Change, 2015,130(4):545-558.
[10] 马倩倩, 贺勇, 张梦婷, 等. 中国北部冬麦区小麦生育期对生育阶段积温变化的响应. 中国农业气象, 2018,39(4):233-244.
[11] Daryanto S, Wang L X, Jacinthe P. Can ridge-furrow plastic mulching replace irrigation in dryland wheat and maize cropping systems? Agricultural Water Management, 2017,190:1-5.
[12] 张洁, 吕军杰, 王育红, 等. 豫西旱地不同覆盖方式对冬小麦生长发育的影响. 干旱地区农业研究, 2008(2):94-97.
[13] 罗来超, 王朝辉, 惠晓丽, 等. 覆膜栽培对旱地小麦籽粒产量及硫含量的影响. 作物学报, 2018,44(6):886-896.
[14] 徐晴, 许甫超, 秦丹丹, 等. 不同氮肥处理对鄂麦006苗期生理形态的影响. 湖北农业科学, 2019,58(22):71-74.
[15] 黄寅玲, 雷忠顺, 郑涛, 等. 不同施氮量对冬小麦产量、效益及土壤理化性状的影响. 作物杂志, 2020(1):130-135.
[16] 张艺, 黄成东, 廖丹, 等. 养分优化管理促进间作小麦高产群体的构建. 中国农学通报, 2018,34(13):1-7.
[17] 郭明明, 赵广才, 郭文善, 等. 施氮量与行距互作对小麦群体质量的调控效应. 麦类作物学报, 2016(7):906-912.
[18] 魏素君, 刘全清, 张宏彦. 不同施氮水平对冬小麦群体性状及产量的影响. 河北农业科学, 2014,18(2):32-35.
[19] 张睿, 刘党校, 刘新伦, 等. 不同年份小麦覆膜播种后群体与产量比较研究. 西北农林科技大学学报(自然科学版), 2003(5):17-20.
[20] Liu Q F, Chen Y, Liu Y, et al. Coupling effects of plastic film mulching and urea types on water use efficiency and grain yield of maize in the Loess Plateau. Soil and Tillage Research, 2016,157:1-10.
[21] 李廷亮, 谢英荷, 高志强, 等. 黄土高原旱地小麦覆膜增产与氮肥增效分析. 中国农业科学, 2018,51(14):2735-2746.
[22] 屈会峰, 赵护兵, 刘吉飞, 等. 不同覆盖措施下旱地冬小麦的氮磷钾需求及其生理效率. 植物营养与肥料学报, 2017,23(4):1874-1882.
[23] 何刚, 王朝辉, 李富翠, 等. 地表覆盖对旱地小麦氮磷钾需求及生理效率的影响. 中国农业科学, 2016,49(9):1657-1671.
[24] 宁东峰, 李志杰, 孙文彦, 等. 限水灌溉下施氮量对冬小麦产量、氮素利用及氮平衡的影响. 植物营养与肥料学报, 2010,16(6):1312-1318.
[1] Ji Ping, Liu Jinlong, Liu Hao, Kuang Jiali, Ye Shihe, Long Sha, Yang Hongtao, Peng Bo, Xu Chen, Liu Xiaolong. Effects of Heat Stress on Yield Components and Quality in Different Rice Varieties during Heading Stage [J]. Crops, 2024, 40(1): 117-125.
[2] Wang Jiaxu, Zhang Fei, Zhang Kuangye, Ke Fulai, Wang Yanqiu, Lu Feng, Zhu Kai. Effects of Reducing Nitrogen Fertilizers and Increasing DMPP on Nitrogen Absorption and Utilization in Sorghum [J]. Crops, 2024, 40(1): 126-131.
[3] Zhou Zhenlei, Liu Jianming, Cao Dong, Liu Baolong, Wang Dongxia, Zhang Huaigang. Comparison of Grass Yield, Agronomic Traits and Forage Quality of Different Oat Varieties [J]. Crops, 2024, 40(1): 132-140.
[4] Liu Hongjie, Ren Dechao, Ge Jun, Zhang Suyu, Lü Guohua, He Xun. Effects of Accumulated Temperature and Planting Density on Pre-Winter Growth of Wheat [J]. Crops, 2024, 40(1): 141-147.
[5] Xiong Xin, Deng Jun, Shang Liyan, Sheng Tian, Ye Jiayu, Liu Zichen, Huang Liying, Zhang Yunbo. Effects of Nitrogen and Potassium Fertilizer Interaction on Yield and Radiation Use Efficiency of Hybrid Rice [J]. Crops, 2024, 40(1): 166-173.
[6] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Wang Yanjie, Zhao Guangcai. Effects of Nitrogen Dressing Time and Proportion on Wheat Grain Filling and Its Physiological Mechanism [J]. Crops, 2024, 40(1): 174-179.
[7] Hao Xiaocong, Li Xinyu, Hou Qiling, Yang Jifang, An Chunhui, Wang Changhua, Ye Zhijie, Zhang Fengting. Effects of Nitrogen Application Rate on the Quality of Two-Line Hybrid Wheat [J]. Crops, 2024, 40(1): 187-192.
[8] Hao Yani, Pei Hongbin, Gao Zhenfeng, Zhang Yijun, Yang Zhenping. Effects of Bacillus vallismortis and Straw Replacing Phosphorus Fertilizer on Growth, Yield and Quality of Tartary Buckwheat [J]. Crops, 2024, 40(1): 204-213.
[9] Shao Meihong, Zhu Defeng, Cheng Siming, Cheng Chu, Xu Qunying, Hu Chaoshui. Study on Seedling Quality and Yield of Machine Transplanting Early Rice with the Seedling Raising of Overlayed-Tray Emergence [J]. Crops, 2024, 40(1): 229-232.
[10] Lü Baolian, Yang Yuxin, Cui Licao, Shi Feng, Ma Liang, Kong Xiuying, Zhang Lichao, Ni Zhiyong. Identification of bHLH Family Transcription Factors of Wheat and Expression Analysis under Salt Stress [J]. Crops, 2024, 40(1): 65-72.
[11] Xie Keran, Gao Ti, Cui Kehui. Research Progress of Potassium Fertilizer Controlling Rice Yield under High Temperature [J]. Crops, 2024, 40(1): 8-15.
[12] Xie Hao, Xue Zhangyi, Shu Chenchen, Zhang Weiyang, Zhang Hao, Liu Lijun, Wang Zhiqin, Yang Jianchang, Gu Junfei. Analysis of Nitrogen Use Efficiency of Base Fertilizer of Rice under Different Crop Management Practices by Using 15N Labeling [J]. Crops, 2024, 40(1): 90-96.
[13] Wang Hongbo, Tang Maosong, Li Guohui, GaoYang , Wang Xingpeng. Construction and Evaluation of Cotton Yield Model Based on Logistic Model for Filmless Drip Irrigation in Southern Xinjiang [J]. Crops, 2024, 40(1): 97-103.
[14] Zhang Rong, Jiang Enxi, Chen Si, Yu Xurun, Chen Gang, Ran Liping, Xiong Fei. Study on the Grain Formation in Wheat Spike Regulated by Ethephon and 1-Methylcyclopropene [J]. Crops, 2023, 39(6): 101-107.
[15] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Zhao Guangcai. Response of Nitrogen Accumulation and Translocation after Anthesis in Strong Gluten Wheat to Nitrogen Topdressing Period and Proportion [J]. Crops, 2023, 39(6): 114-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!