Crops ›› 2023, Vol. 39 ›› Issue (5): 10-15.doi: 10.16035/j.issn.1001-7283.2023.05.002

Previous Articles     Next Articles

Correlation Analysis of Yield and Agronomic Traits of Summer Soybean Based on BLUP Value

Chang Shihao(), Geng Zhen(), Yang Qingchun, Shu Wentao, Li Jinhua, Li Qiong, Zhang Baoliang, Zhang Donghui   

  1. Soybean Institute, Zhoukou Academy of Agricultural Sciences, Zhoukou 466001, Henan, China
  • Received:2022-03-11 Revised:2022-05-05 Online:2023-10-15 Published:2023-10-16

Abstract:

Based on the data of two groups (group A and group B) of southern Huang-Huai-Hai summer soybean in 2018, the best linear unbiased prediction (BLUP) was used to analyze the heritability and correlation between yield and nine agronomic traits. The results showed that the variation range of growth period was the smallest, while that of effective branches number was the largest. The heritabilities of growth period, plant height, main stem nodes number and 100-grain weight were higher, while the heritabilities of yield, bottom pod height and grain weight per plant were lower. Number of pods per plant, number of grains per plant and grain weight per plant were significantly positively correlated with yield. The correlation coefficients and direct path coefficients of the nine agronomic traits and yield were not consistent, which was mainly caused by the interaction between agronomic traits. In the process of summer soybean breeding, growth period, plant height, main stem node number, 100-grain weight should be chosen in the early generation, while yield, bottom pod height and grain weight per plant should be chosen in high generation. During the breeding process of soybean, the selection of number of pods per plant, number of grains per plant and grain weight per plant should be emphasized, which was the key to rapidly breeding high yield soybean varieties.

Key words: Summer soybean, Regional test, BLUP value, Heritability, Path analysis

Table 1

The information of testing varieties and sites information in south group of Huang-Huai-Hai region"

序号
Number
A组Group A B组Group B
品种
Variety
试验点
Test site
品种
Variety
试验点
Test site
1 郑1307 安徽阜阳 菏豆33号 安徽阜阳
2 周豆28号 安徽龙亢 皇豆11 安徽龙亢
3 科豆10号 安徽宿州 祥丰2号 安徽宿州
4 丰源5号 河南驻马店 蒙0811 河南商丘
5 阜1306 江苏灌云 周豆33 河南驻马店
6 皖豆38 江苏淮安 驻豆26 江苏灌云
7 皖宿0922 江苏徐州 菏豆36号 江苏淮安
8 邯豆11 山东菏泽 兴豆6号 江苏徐州
9 冀豆30 山东济宁 山宁23 山东菏泽
10 泛豆9号 山东临沂 徐0112-24 山东济宁
11 濮豆820 临豆11 山东临沂
12 郑1311 圣豆4号
13 商豆1201 祥丰4号
14 中黄73 中黄202
15 中黄13 中黄13

Table 2

Statistical information on observed values and BLUP values of yield and related traits"

性状
Trait
项目
Item
A组Group A B组Group B
平均数
Mean
标准差
Standard deviation
变异系数
Coefficient of variation (%)
平均数
Mean
标准差
Standard deviation
变异系数
Coefficient of variation (%)
V1 观测值 191.57 10.54 5.50 189.49 9.33 4.92
BLUP值 191.57 8.48 4.42 189.48 7.55 3.98
V2 观测值 103.80 2.18 2.10 101.80 2.11 2.07
BLUP值 103.77 1.95 1.87 101.80 1.94 1.91
V3 观测值 74.19 12.43 16.75 62.62 8.97 14.33
BLUP值 74.17 12.18 16.42 62.62 8.63 13.79
V4 观测值 16.96 3.00 17.68 17.16 1.96 11.41
BLUP值 16.96 2.52 14.88 17.16 1.45 8.45
V5 观测值 16.17 1.38 8.55 14.44 0.93 6.43
BLUP值 16.17 1.34 8.27 14.43 0.87 6.00
V6 观测值 1.97 0.55 28.05 1.99 0.52 26.31
BLUP值 1.97 0.49 25.06 1.98 0.49 24.75
V7 观测值 44.29 5.39 12.17 38.65 5.00 12.94
BLUP值 44.29 4.69 10.59 38.65 4.34 11.23
V8 观测值 87.15 10.60 12.16 78.87 9.80 12.43
BLUP值 87.41 9.26 10.59 78.86 8.44 10.71
V9 观测值 16.91 1.05 6.21 16.76 1.60 9.52
BLUP值 16.91 0.53 3.14 16.77 1.10 6.57
V10 观测值 20.15 2.13 10.56 22.42 1.95 8.69
BLUP值 20.16 2.02 10.00 22.41 1.84 8.22

Table 3

Heritability of yield and related traits"

性状
Trait
A组Group A B组Group B
遗传力
Heritability
排名
Ranking
遗传力
Heritability
排名
Ranking
V1 0.80 9 0.80 8
V2 0.93 4 0.93 4
V3 1.00 1 0.96 1
V4 0.84 8 0.74 9
V5 0.96 2 0.93 3
V6 0.89 5 0.91 5
V7 0.87 6 0.87 6
V8 0.86 7 0.86 7
V9 0.51 10 0.70 10
V10 0.95 3 0.95 2

Fig.1

Visualization of correlations between yield and related traits “*”,“**”,“***”represent significant at 0.05, 0.01, 0.001 levels, respectively"

Table 4

Correlation analysis between yield and related traits"

性状Trait V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 1.00
V2 0.27 1.00
V3 0.11 0.61** 1.00
V4 0.06 0.08 0.33* 1.00
V5 0.04 0.53** 0.85*** 0.08 1.00
V6 -0.02 -0.27 0.05 0.04 0.03 1.00
V7 0.56** 0.53** 0.45* 0.07 0.47** 0.25 1.00
V8 0.62** 0.33* 0.39* 0.05 0.39* 0.25 0.92*** 1.00
V9 0.73*** 0.32* 0.33* 0.21 0.21 -0.02 0.48** 0.54** 1.00
V10 -0.26 -0.23 -0.27 0.14 -0.34* -0.28 -0.80*** -0.86*** -0.09 1.00

Table 5

The path coefficients of related traits and yield"

性状
Trait
相关系数Correlation
coefficient
直接通径系数Direct path
coefficient
间接通径系数Indirect path coefficient
V2→V1 V3→V1 V4→V1 V5→V1 V6→V1 V7→V1 V8→V1 V9→V1 V10→V1
V2 0.27 0.20 -0.10 -0.01 -0.10 0.02 -0.04 0.66 -0.05 -0.31
V3 0.11 -0.17 0.12 -0.04 -0.15 0.00 -0.04 0.80 -0.05 -0.36
V4 0.06 -0.14 0.02 -0.05 -0.01 0.00 -0.01 0.10 -0.03 0.18
V5 0.04 -0.18 0.11 -0.14 -0.01 0.00 -0.04 0.80 -0.03 -0.46
V6 -0.02 -0.06 -0.05 -0.01 0.00 -0.01 -0.02 0.50 0.00 -0.37
V7 0.56 -0.08 0.11 -0.07 -0.01 -0.09 -0.02 1.86 -0.07 -1.07
V8 0.62 2.02 0.07 -0.07 -0.01 -0.07 -0.02 -0.08 -0.08 -1.15
V9 0.73 -0.15 0.06 -0.05 -0.03 -0.04 0.00 -0.04 1.09 -0.11
V10 -0.26 1.34 -0.05 0.04 -0.02 0.06 0.02 0.07 -1.73 0.01
[1] Song W W, Yang R Q, Wu T T, et al. Analyzing the effects of climate factors on soybean protein,oil contents,and composition by extensive and high-density sampling in China. Journal of Agricultural and Food Chemistry, 2016, 64(20):4121-4130.
doi: 10.1021/acs.jafc.6b00008
[2] Wu T T, Yao Y, Sun S, et al. Temporal-spatial characterization of nutritional and bioactive components of soybean cultivars in China. Journal of the American Oil Chemists' Society, 2017, 93 (12):1637-1654.
doi: 10.1007/s11746-016-2908-4
[3] 卢昱嘉, 陈秧分, 洪宇. 兼顾风险和成本的中国大豆进口布局优化. 经济地理, 2022, 42(12):104-114.
[4] 新刚, 喻佳节, 司伟. 2021年大豆产业发展趋势与政策建议. 大豆科技, 2021(1):15-18.
[5] 中华人民共和国国家统计局. 中国统计年鉴 2014. 北京: 中国统计出版社,2014.
[6] 张勤, 陈霞. 用BLUP方法估计北京市黑白花种公牛育种值的研究. 畜牧兽医学报, 1986, 17(3):152-157.
[7] 俞渭江, 洪振中. 种公牛选择方法研究——应用最优线性无偏估计乳用种公牛育种值的方法. 中国农业科学, 1984(5):77-83.
[8] 王楚端, 张沅. 动物模型BLUP在猪育种中的应用. 中国畜牧杂志, 1995(5):54-56.
[9] 钱宏光, 布仁, 巴图, 等. BLUP法在肉羊育种中的应用初探. 中国草食动物, 2000(4):22-24.
[10] 孙晓梅, 杨秀艳. 林木育种值预测方法的应用与分析. 北京林业大学学报, 2011, 33(2):65-71.
[11] 栾生, 孔杰, 王清印. 水产动物育种值估计方法及其应用的研究进展. 海洋水产研究, 2008(3):101-107.
[12] 张群远, 孔繁玲, 杨付新. 作物品种区域试验中品种均值估计的模型和方法——算术平均值、加权最小二乘估值和BLUP的比较. 作物学报, 2003, 29(6):884-891.
[13] 陈勇生, 邓海华, 刘福业, 等. 甘蔗亲本评价研究(Ⅱ)——BLUP方法的应用初探. 广东农业科学, 2013, 40(14):26-29.
[14] 任长宏, 格桑曲珍, 胡希远. 经验性最佳线性无偏预测(eBLUP)在油菜区域试验品种评价的效果. 作物学报, 2017, 43(3):371-377.
[15] 郭敏杰, 邓丽, 苗建利, 等. 基于BLUP值的大粒花生农艺性状与产量的相关和通径分析. 河北农业大学学报, 2021, 44 (5):36-41.
[16] 徐扬. 关联分析和基因组预测相关方法的探讨与应用. 扬州:扬州大学, 2016.
[17] 贾冰, 马建江, 宋吉坤, 等. 陆地棉自然群体纤维强度性状的全基因组关联分析. 中国棉花, 2021, 48(4):13-19,28.
[18] 王敏, 徐萍, 刘新江, 等. 黄淮海地区夏玉米农艺性状与产量的通径分析. 中国生态农业学报, 2011, 19(5):1229-1236.
[19] 邓丽, 郭敏杰, 苗建利, 等. 基于通径系数和GGE双标图的大粒花生综合分析. 江苏农业科学, 2021, 49(19):129-133.
[20] 袁新捷, 刘潇, 陈国兴. 水稻核心种质资源茎秆抗倒伏性研究. 华中农业大学学报, 2021, 40(1):147-153.
[21] 亓振, 赵广才, 常旭虹, 等. 小麦产量与农艺性状的相关分析和通径分析. 作物杂志, 2016(3):45-50.
[22] 苟升学, 肖金平. 陕西省夏大豆产量与主要农艺性状的通径及灰色关联度分析. 江西农业学报, 2016, 28(9):18-22.
[23] 任红松, 朱家辉, 杨斌, 等. EXCEL在通径分析中的应用. 农业网络信息, 2006(3):90-92.
[24] 孙晓梅, 杨秀艳. 林木育种值预测方法的应用与分析. 北京林业大学学报, 2011, 33(2):65-71.
[25] 许俊杰, 闫文亮, 赵团结, 等. CROPGRO大豆花期模拟模型品种参数的遗传学解析. 南京农业大学学报, 2021, 44(4):778-788.
[26] 柳赛花, 纪雄辉, 谢运河, 等. 基于GGE双标图和BLUP分析筛选镉砷同步低累积水稻品种. 生态环境学报, 2021, 30 (2):405-411.
doi: 10.16258/j.cnki.1674-5906.2021.02.021
[27] 周长军. 大豆有性杂交F2代产量性状的遗传力分析与遗传相关研究. 黑龙江农业科学, 2006(6):14-16.
[28] 刘东, 齐婉冬, 冯燕, 等. 大豆主要农艺性状的遗传解析. 大豆科学, 2018, 37(2):165-172.
[29] 兰佳伟, 王福林, 宋莹莹. 种植模式对大豆农艺性状和产量的影响. 大豆科学, 2020, 39(4):564-570.
[30] 何鑫, 马文娅, 付汝洪, 等. 2006-2017年国家黄淮海夏大豆品种区域试验参试品种(系)分析. 中国油料作物学报, 2019, 41(4):537-549.
doi: 10.7505/j.issn.1007-9084.2019.04.008
[31] 王大刚, 陈圣男, 于国宜, 等. 1983-2019年安徽省夏大豆品种主要性状变化趋势分析. 中国油料作物学报, 2021, 43(3):510-517.
[32] 张连秋, 任艳云, 朱哲. 2000年以来黄淮海地区国审夏大豆品种主要农艺性状的演进. 江苏农业科学, 2020, 48(14):113-116.
[33] 汪宝卿, 张礼凤, 戴海英, 等. 黄淮海地区夏大豆农艺性状的遗传变异、相关及主成分分析. 大豆科学, 2012, 31(2):208-212.
[1] Ling Yibo, Wang Binjie, Hu Yimin, Heinar·Madithermic mann, Chen Nianlai. Responses of Dry Matter Translocation and Yield Formation to Planting Density and Row Spacing of Sunflower [J]. Crops, 2023, 39(5): 197-203.
[2] Yuan Liuzheng, Wang Huiqiang, WangQiuling , Zhu Shidie, ZhaoYueqiang , Yuan Manman, Wang Huitao, Zhang Yundong, Liu Jiayou, Yuan Yongqiang. Analysis of Combining Ability and Genetic Effect of Maize Inbred Lines under Shading Condition [J]. Crops, 2023, 39(4): 104-109.
[3] Xie Wenjin, Li Fangming, Li Ning, Yang Hailong, Fu Jun, Zhang Zhongwei, Gao Xudong, Feng Guang. Analysis of Yield, Quality Traits and TestingSite Discrimination of Fresh Waxy Corn in Northern China Based on GGE Biplot [J]. Crops, 2023, 39(4): 85-90.
[4] Guo Shulei, Wang Ying, Wei Liangming, Zhang Xin, Liu Yan, Wu Weihua, Lu Daowen, Lei Xiaobing, Wang Zhenhua, Lu Xiaomin. Analysis of Influencing Factors of Maize Yield under Different Ecological Conditions [J]. Crops, 2023, 39(3): 205-214.
[5] Jia Xiuping, Mao Xuhui, Liang Gensheng, Liu Runping, Liu Feng, Wang Xingzhen. Analysis of Physiological and Biochemical Mechanism and Growth and Development Characteristics of Saline and Alkali Resistance in Sunflower [J]. Crops, 2022, 38(5): 146-152.
[6] Qiao Yujia, Wei Ling, Xiao Junhong, Liu Bo, Yang Haifeng, Duan Xueyan. Analysis on the Yield Differences of Huanghuaihai Summer Soybeans in Different Years and Locations [J]. Crops, 2022, 38(4): 221-226.
[7] Zhang Qi, Wei Zhenwu, Yan Tianfang. Correlation and Path Analysis of Oat Seed Yield with Agronomic Characters in Jiang-Huai Area [J]. Crops, 2021, 37(5): 146-152.
[8] Qi Jianshuang, Xia Laikun, Huang Bao, Li Chunying, Ma Zhiyan, Ding Yong, Gu Limin, Zhang Jun, Zhang Fengqi, Mu Xinyuan, Tang Baojun, Zhao Faxin, Zhang Lanxun. Discussion on the Application in the Regional Experiment of Maize Varieties by Entropy DTOPSIS Mode and Grey Situation Decision Methods [J]. Crops, 2021, 37(1): 60-67.
[9] Yang Haifeng, Duan Xueyan, Wei Ling, Liu Bo. The Genetic Study of Yield Traits in Edible Sunflower [J]. Crops, 2020, 36(5): 93-97.
[10] Zhang Xiaoyan, Wang Xiaonan, Cao Kun, Sun Yufeng. Correlation Analysis of Fiber Yield and Yield Components in Five Industrial Hemp Varieties (Lines) [J]. Crops, 2020, 36(4): 121-126.
[11] Wang Yanqing,Li Yongjun,Li Chunhua,Lu Wenjie,Sun Daowang,Yin Guifang,Hong Bo,Wang Lihua. Correlation and Path Analysis of the Main Agronomic Traits and Yield per Plant of Quinoa [J]. Crops, 2019, 35(6): 156-161.
[12] Liu Xingye,Xing Baolong,Wu Ruixiang,Wang Guimei,Liu Fei. Main Agronomic Traits Variation and Its Effects on Yield Composition of Mung Bean in Northern Shanxi Province [J]. Crops, 2019, 35(5): 69-75.
[13] Ren Honglei,Li Chunxia,Gong Shichen,Li Guoliang,Hu Guanghui,Wang Mingquan,Yang Jianfei. Genetic Correlation and Path Analysis of Yield and Agronomic Characteristics of Maize Hybrids in SPSS Software [J]. Crops, 2019, 35(3): 86-90.
[14] Yasong Cui, Yan Wang, Lijuan Yang, Chaoxin Wu, Piao Zhou, Pan Ran, Qingfu Chen. Genetic Analysis of Fruit Hull Rate and Related Traits on Tartary Buckwheat [J]. Crops, 2019, 35(2): 51-60.
[15] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System [J]. Crops, 2018, 34(4): 114-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!