Crops ›› 2023, Vol. 39 ›› Issue (4): 104-109.doi: 10.16035/j.issn.1001-7283.2023.04.016

Previous Articles     Next Articles

Analysis of Combining Ability and Genetic Effect of Maize Inbred Lines under Shading Condition

Yuan Liuzheng1,2(), Wang Huiqiang1,2(), WangQiuling 1,2(), Zhu Shidie1,2, ZhaoYueqiang 1,2, Yuan Manman1,2, Wang Huitao1,2, Zhang Yundong1,2, Liu Jiayou1,2(), Yuan Yongqiang1,2   

  1. 1Luohe Academy of Agricultural Sciences,Luohe 462000, Henan, China
    2The Maize Disaster Prevention and Mitigation Engineering Research Center of Henan Province, Luohe 462000, Henan, China
  • Received:2022-02-08 Revised:2022-07-27 Online:2023-08-15 Published:2023-08-15

Abstract:

In order to improve the tolerance of maize varieties with heterosis,ten inbred lines with different shading tolerance were used as parents, combining ability and genetic parameters of yield and ear characteristics under shading and natural light were analyzed according to NC II 4×6 genetic mating design. The results showed that there were extremely significant differences in yield, ear length, bald tip length, ear diameter, row number per ear, grain number per row and 100-grain weight under natural light and shade treatments. The four inbred lines of Changgai3, R2005, LYM35 and LYM10 had high general combining ability, high special combining ability and strong heterosis under shading treatments, which could be used as candidate parents for shading resistance genetic improvement of maize. The special combining ability effect value of LYM35×Changgai3 was higher in shading treatments, and it showed excellent performance in shading treatments. Genetic parameter analysis showed that the narrow heritabilities of yield, ear length, ear diameter, bald tip length and row number per ear under shading treatments were relatively high, which could be selected for shading tolerance in early generations. The narrow-sense heritabilities of grain number per row and 100-grain weight were low, but the general heritabilities were high, selection should be made in high breeding generations.

Key words: Maize, Heterosis, Tolerance of shade, Combining ability, Narrow-sense heritability, General heritability

Table 1

Inbred lines and origins of test maizes"

编号
Number
名称
Name
血缘关系
Kinship
1 昌改3 昌7-2改良系
2 R2005 78599选系
3 LYF9 先锋杂交种选系
4 Y1803 LIBC 4×4CV⊕/4CV
5 LYF5 LH220Ht×6WC⊕/6WC⊕
6 LYM35 PHW17×6WC⊕/6WC/6WC/漯7007/漯7007
7 Y101 R2005×郑58选系
8 LYM90 豫1122×H3659Z
9 LYM11 PHK35×6WC
10 LYM10 德单5号杂交种选系

Table 2

Variance analysis of combing ability on yield and different agronomic traits under different treatments (F value)"

变异来源
Source of
variation
自由度
Degreeof
freedom
产量
Yield
穗长
Ear
length
穗粗
Ear
diameter
秃尖长
Bald tip
length
穗行数
Row number
per ear
行粒数
Grainnumber
per row
百粒重
100-grain
weight
CK ZY CK ZY CK ZY CK ZY CK ZY CK ZY CK ZY
区组Group 2 2.28 0.24 2.42 2.64 2.26 0.80 1.51 3.15 0.07 2.84 0.79 1.80 2.11 1.82
组合Combination 23 11.09** 23.33** 89.92** 4.63** 13.25** 3.63** 105.44** 4.84** 8.89** 18.10** 4.17** 24.47** 13.25** 13.20**
亲本1 Parent 1 3 5.15* 5.20* 20.84** 6.49** 4.03* 5.62** 4.47* 8.21** 7.40** 9.06** 3.54* 3.11 29.13** 1.21
亲本2 Parent 2 5 0.79 1.07 1.21 0.97 3.16* 2.49 1.84 1.64 4.24* 0.50 0.37 0.92 1.91 0.81
亲本1×亲本2
Parent 1×parent 2
15 7.42** 14.92** 24.74** 2.71** 7.10** 1.89 64.47** 2.33* 3.50** 9.32** 3.49** 19.47** 2.72** 13.39**

Table 3

GCA effects of yield and different agronomic traits under different treatments"

自交系
Inbred
line
产量
Yield
穗长
Ear length
穗粗
Ear diameter
秃尖长
Bald tip length
穗行数
Row number per ear
行粒数
Grainnumberper row
百粒重
100-grainweight
CK ZY CK ZY CK ZY CK ZY CK ZY CK ZY CK ZY
昌改3 Changgai 3 21.28 50.14 -7.15 -10.81 4.62 5.33 -61.81 -45.89 8.83 12.06 5.62 20.60 -7.05 -3.53
R2005 8.73 14.34 -2.35 -2.53 1.66 4.43 0.14 45.83 1.01 4.70 -0.31 -2.75 -4.90 3.87
LYF9 -27.01 -30.59 -8.08 -8.75 -3.56 -2.30 -9.48 -15.58 -0.87 -5.06 -9.57 -10.66 -2.11 -2.48
Y1803 -3.00 -33.88 17.57 22.09 -2.71 -7.46 71.15 15.63 -8.98 -11.69 4.26 -7.19 14.06 2.13
LYF5 -1.84 -20.00 5.87 6.19 -2.91 -6.01 -32.11 20.21 -7.99 -2.40 1.41 -11.29 5.10 1.00
LYM35 1.36 18.72 1.43 6.64 -2.31 0.58 1.84 2.24 -2.80 -0.63 3.45 -8.23 0.69 -5.67
Y101 3.89 -5.21 0.92 -10.10 -4.83 -4.35 -66.05 -39.24 -6.51 -3.15 0.67 -5.30 -4.19 -1.15
LYM90 -18.28 -25.84 -2.67 -5.57 6.43 7.91 23.06 -6.03 8.34 4.41 -2.66 9.08 -0.58 3.71
LYM11 10.57 0.27 -3.95 5.76 2.68 1.62 54.46 4.42 6.26 2.98 -3.81 5.69 -0.11 3.65
LYM10 4.30 32.05 -1.59 -2.92 0.94 0.25 18.81 18.41 2.70 -1.21 0.94 10.06 -0.92 -1.54

Table 4

SCA effects of yield and different agronomic traits under different treatments"

组合
Combination
产量
Yield
穗长
Ear length
穗粗
Ear diameter
秃尖长
Bald tip length
穗行数
Row number per ear
行粒数
Grainnumberper row
百粒重
100-grainweight
CK ZY CK ZY CK ZY CK ZY CK ZY CK ZY CK ZY
LYF5×昌改3
LYF5×Changgai 3
-3.21 -40.27 -0.62 -5.14 -1.92 -0.78 -6.08 -37.74 -3.49 -3.43 -1.28 -0.82 1.07 2.96
LYM35×昌改3
LYM35×Changgai 3
5.59 62.74 0.43 -1.77 0.24 -3.58 27.86 8.97 -7.49 -2.70 4.01 7.80 -0.48 6.94
Y101×昌改3
Y101×Changgai 3
16.44 -11.96 6.38 18.10 1.47 1.35 27.86 28.25 2.15 4.81 9.23 -1.23 2.74 -5.29
LYM90×昌改3
LYM90×Changgai 3
-17.05 -73.88 -4.92 -24.05 3.40 -2.57 -27.30 -28.48 3.93 -0.50 -5.07 -14.32 4.87 1.14
LYM11×昌改3
LYM11×Changgai 3
-15.35 50.50 -4.00 2.56 -4.75 -1.59 -16.27 23.13 3.64 1.19 -7.17 -0.40 -8.81 -9.06
LYM10×昌改3
LYM10×Changgai 3
13.57 12.88 2.73 10.30 1.56 7.17 -6.08 5.87 1.26 0.63 0.28 8.97 0.61 3.31
LYF5×R2005 10.71 37.90 9.73 9.84 2.14 2.58 -0.14 22.11 -0.42 2.18 4.37 28.86 3.32 0.86
LYM35×R2005 27.42 1.37 -1.24 -0.60 2.65 11.22 33.80 -12.19 2.10 -2.01 4.51 10.55 2.59 5.64
Y101×R2005 -23.67 2.65 -0.22 2.30 -1.43 1.31 -0.14 -3.37 2.84 0.93 -3.02 -8.63 -2.52 9.86
LYM90×R2005 28.79 44.47 4.91 4.29 3.61 -5.26 -38.33 16.99 3.44 3.11 8.98 -1.42 -6.82 -0.70
LYM11×R2005 -30.08 -67.12 -12.34 -19.41 -3.26 -6.56 -45.97 16.56 -7.54 -3.20 -11.02 -33.05 1.56 -12.34
LYM10×R2005 -13.17 -19.27 -0.84 3.58 -3.72 -3.29 50.78 -40.11 -0.42 -1.01 -3.83 3.70 1.87 -3.32
LYF5×LYF9 -1.02 -0.46 -7.39 -4.64 -1.98 2.68 -58.42 -26.23 3.83 8.44 -1.55 -12.82 -5.50 0.38
LYM35×LYF9 -12.14 -31.14 0.65 2.68 0.54 -4.16 -41.44 24.40 -2.55 3.67 -3.04 -2.07 1.83 0.04
Y101×LYF9 -12.76 24.20 -3.99 5.06 -3.72 -3.34 -7.50 -13.82 -8.34 -10.56 -9.75 15.53 -1.77 -4.20
LYM90×LYF9 -17.05 -2.65 -0.65 -3.54 -7.65 -1.06 157.99 47.92 -5.37 -14.87 -10.22 -18.31 2.76 -3.72
LYM11×LYF9 28.58 26.76 7.72 2.37 4.89 1.31 7.78 -50.29 1.46 -0.43 10.99 14.07 4.67 11.05
LYM10×LYF9 14.39 -16.71 3.66 -1.93 7.91 4.57 -58.42 18.03 10.96 13.75 13.57 3.60 -1.99 -3.54
LYF5×Y1803 -6.48 2.83 -1.72 -0.05 1.75 -4.48 64.64 41.86 0.07 -7.18 -1.55 -15.22 1.11 -4.20
LYM35×Y1803 -20.87 -32.97 0.16 -0.32 -3.43 -3.48 -20.23 -21.19 7.94 1.04 -5.48 -16.29 -3.95 -12.62
Y101×Y1803 19.99 -14.89 -2.17 -25.46 3.67 0.68 -20.23 -11.06 3.34 4.81 3.54 -5.66 1.55 -0.37
LYM90×Y1803 5.32 32.05 0.66 23.30 0.65 8.90 -92.36 -36.43 -2.00 12.25 6.32 34.05 -0.81 3.29
LYM11×Y1803 16.85 -10.14 8.62 14.48 3.12 6.84 54.46 10.61 2.45 2.44 7.20 19.38 2.58 10.35
LYM10×Y1803 -14.80 23.11 -5.56 -11.95 -5.76 -8.46 13.72 16.21 -11.80 -13.37 -10.02 -16.27 -0.49 3.55

Table 5

Genetic parameters of main traits under different treatments"

项目
Item
产量
Yield
穗长
Ear
length
穗粗
Ear
diameter
秃尖长
Bald tip
length
穗行数
Row number
per ear
行粒数
Grainnumber
per row
百粒重
100-grain
weight
CK ZY CK ZY CK ZY CK ZY CK ZY CK ZY CK ZY
加性方差
Additive variance
12704.54 6729.55 3.60 3.43 0.02 0.06 0.06 0.22 0.91 1.74 3.20 6.45 7.57 0.22
非加性方差
Non-additive variance
15905.85 8971.07 1.04 2.36 0.04 0.04 0.10 0.11 0.61 1.16 5.39 17.38 1.02 5.78
环境方差
Environmental variance
7434.10 1932.97 0.13 4.14 0.02 0.12 0.01 0.24 0.73 0.42 6.48 2.82 1.78 1.40
一般配合力方差
Variance of GCA (%)
44.41 43.47 77.78 59.19 54.90 70.89 44.48 70.47 72.45 60.07 37.20 27.05 88.60 3.59
特殊配合力方差
Variance of SCA (%)
55.59 56.53 22.22 40.81 45.10 29.11 55.52 29.53 27.55 39.93 62.80 72.95 11.40 96.41
广义遗传力
General heritability (%)
79.38 89.14 97.27 58.29 81.85 50.30 97.44 60.00 75.14 87.41 56.97 89.41 83.44 81.07
狭义遗传力
Narrow-sense heritability (%)
35.25 38.75 75.66 34.50 44.93 35.66 43.34 42.28 54.44 52.51 21.20 24.18 73.92 2.91
[1] 李从锋, 贾春兰, 陶志强, 等. 拔节期淹水对不同株高夏玉米产量、形态特征及物质生产的影响. 玉米科学, 2019, 27(6):62-67.
[2] Wang J, Shi K, Lu W, et al. Effects of post-silking shading stress on enzymatic activities and phytohormone contents during grain development in spring maize. Journal of Plant Growth Regulation, 2021, 40(3):1-14.
doi: 10.1007/s00344-020-10064-w
[3] 谢瑞芝, 明博. 玉米生产系统对气候变化的响应与适应. 中国农业科学, 2021, 54(17):3587-3591.
doi: 10.3864/j.issn.0578-1752.2021.17.003
[4] 薛昌颖, 马志红, 胡程达. 近40a黄淮海地区夏玉米生长季干旱时空特征分析. 自然灾害学报, 2016, 25(2):1-14.
[5] 李军玲, 郭其乐. 夏玉米花期阴雨风险区划遥感方法研究. 遥感信息, 2015, 30(2):77-79.
[6] 史振声, 钟雪梅, 黄海皎, 等. 遮荫胁迫对不同耐阴性玉米叶绿素含量的影响. 玉米科学, 2013, 21(4):55-58.
[7] 周卫霞, 王秀萍, 穆心愿, 等. 弱光胁迫对不同基因型玉米雌雄花发育和授粉结实能力的影响. 作物学报, 2013, 39(11):2065-2073.
doi: 10.3724/SP.J.1006.2013.02065
[8] 崔海岩, 靳立斌, 李波, 等. 遮阴对夏玉米干物质积累及养分吸收的影响. 应用生态学报, 2013, 24(11):3099-3105.
[9] 刘仲发, 勾玲, 赵明, 等. 遮荫对玉米茎秆形态特征、穿刺强度及抗倒伏能力的影响. 华北农学报, 2011(4):91-96.
doi: 10.7668/hbnxb.2011.04.016
[10] 崔海岩, 靳立斌, 李波, 等. 遮阴对夏玉米茎秆形态结构和倒伏的影响. 中国农业科学, 2012, 45(17):3497-3505.
doi: 10.3864/j.issn.0578-1752.2012.17.005
[11] 吴亚男, 朱海燕, 张春玲, 等. 遮阴对春玉米物质生产及产量形成的影响. 玉米科学, 2015, 23(1):97-102.
[12] 高佳, 崔海岩, 史建国, 等. 花粒期光照对夏玉米光合特性和叶绿体超微结构的影响. 应用生态学报, 2018, 29(3):883-890.
[13] Yuan L, Tang J, Wang X, et al. QTL analysis of shading sensitive related traits in maize under two shading treatments. PLoS ONE, 2012, 7(6):e38696.
doi: 10.1371/journal.pone.0038696
[14] 王向东, 高根来, 张风琴. 玉米产量性状配合力遗传分析. 玉米科学, 2001, 9(1):31-33.
[15] Pooja, DeviN.Heterosis,molecular diversity,combining ability and their interrelationships in short duration maize (Zea mays L.) across the environments. Euphytica, 2010, 178(1):71-81.
doi: 10.1007/s10681-010-0271-3
[16] Dan M, Betrán J F, Bänziger M, et al. Combining ability,heterosis and genetic diversity in tropical maize (Zea mays L.) under stress and non-stress conditions. Euphytica, 2011, 180(2):143-162.
doi: 10.1007/s10681-010-0334-5
[17] Aghaei S, Aharizad S, Shiri M R, et al. Average heterosis of maize hybrids under terminal water stress at Moghan region. Scholars Research, 2012, 3:5462-5465.
[18] Noorka I R, Taufiqullah. Heterosis and proportional contribution of line×tester interaction and gene action in different maize hybrids under water regimes. The Journal of Animal & Plant Sciences, 2015, 25(6):1616-1625.
[19] Lopes M S, Araus J L, van Heerden P D, et al. Enhancing drought tolerance in C4 crops. Journal of Experimental Botany, 2011, 62(9):3135.
doi: 10.1093/jxb/err105
[20] 卢秉生, 高洪敏, 姚永祥, 等. 10个玉米自交系穗部性状的配合力和遗传参数分析. 作物杂志, 2017(2):23-28.
[21] 张如养, 宋伟, 赵久然, 等. 玉米自交系京724和郑58的产量配合力及杂种优势研究. 玉米科学, 2018, 26(6):1-6,13.
[22] 隋冬华, 唐贵, 武新娟, 等. 19个早熟玉米自交系改良德美亚3号主要农艺性状的配合力分析. 黑龙江农业科学, 2020(9):27-30.
[23] 刘炜, 史延丽, 马洪文, 等. 粳型杂交稻品质性状与其亲本关系的初步研究. 种子, 2004, 23(6):56-57.
[24] 张向群. 玉米自交系两种配合力在杂种一代的表现. 作物学报, 1987, 13(2):135-142.
[25] 刘炜, 李自超, 史延丽, 等. 试用配合力进行粳型水稻杂种优势生态型的划分. 作物学报, 2004, 30(1):66-72.
[26] Guei R G, Wassom C E. Genetics of osmotic adjustment in breeding maize for drought tolerance1. Heredity, 1993, 71(4):436-441.
doi: 10.1038/hdy.1993.158
[27] Lebreton C, Lazić-Jančić V, Steed A, et al. Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. Journal of Experimental Botany, 1995, 46(288):853-865.
doi: 10.1093/jxb/46.7.853
[28] 罗明亮. 甘蓝型油菜苗期耐旱相关性状的配合力和遗传效应分析. 重庆:西南大学, 2010.
[29] 张毅, 黄贺, 程勇, 等. 甘蓝型油菜萌发期低温耐性相关性状的配合力、遗传效应及杂种优势分析. 中国油料作物学报, 2022, 44(1):168-176.
[30] 吕慧芳. 温室专用迷你黄瓜杂种优势利用与遗传研究. 武汉:华中农业大学, 2008.
[1] Zheng Fei, Chen Jing, Cui Yakun, Kong Lingjie, Meng Qingchang, Li Jie, Liu Ruixiang, Zhang Meijing, Zhao Wenming, Chen Yanping. Screening of High and Stable Yield Maize Varieties Suitable for Grain Mechanical Harvesting in Different Ecological Areas of the Huaibei Region [J]. Crops, 2023, 39(4): 110-117.
[2] Wang Liping, Bai Lanfang, Wang Tianhao, Wang Xiaoxuan, Bai Yunhe, Wang Yufen. Effects of Different Nitrogen Levels on Nitrogen Accumulation and Transport in Silage Maize [J]. Crops, 2023, 39(4): 165-173.
[3] Li Yuxin, Lu Min, Zhao Jiuran, Wang Ronghuan, Xu Tianjun, Lü Tianfang, Cai Wantao, Zhang Yong, Xue Honghe, Liu Yueʼe. The Production Status Investigation and Analysis of Summer Maize in Beijing-Tianjin-Tangshan Region [J]. Crops, 2023, 39(4): 174-181.
[4] Liu Songtao, Tian Zaimin, Liu Zigang, Gao Zhijia, Zhang Jing, He Donggang, Huang Zhihong, Lan Xin. Transcriptomic Analysis to Reveal Lodging Resistance Genes and Metabolism Pathways in Maize (Zea mays L.) [J]. Crops, 2023, 39(4): 31-37.
[5] Wen Shenghui, Yang Junwei, Wang Yang, Li Gongjian, Weng Jianfeng, Duan Canxing, Jia Xin, Wang Jianjun. Research Progress on Discovery of Resistance Genes and Molecular Breeding Utilization of Fungal Diseases in Maize [J]. Crops, 2023, 39(3): 1-11.
[6] Chang Qing, Li Lijun, Qu Jiahui, Zhang Yanli, Han Dongyu, Zhao Xinyao. Yield Advantage and Nitrogen Use Efficiency of Forage Maize-Rape Intercropping Following Wheat in Tumed Plain [J]. Crops, 2023, 39(3): 167-174.
[7] Guo Shulei, Wang Ying, Wei Liangming, Zhang Xin, Liu Yan, Wu Weihua, Lu Daowen, Lei Xiaobing, Wang Zhenhua, Lu Xiaomin. Analysis of Influencing Factors of Maize Yield under Different Ecological Conditions [J]. Crops, 2023, 39(3): 205-214.
[8] Gao Mutian, Qiu Guanjie, Zhu Tongtong, Li Ruilian, Deng Min, Luo Hongbing, Huang Cheng. Dissecting the Genetic Basis of Flag Leaf in Maize-Teosinte Introgression Line Population [J]. Crops, 2023, 39(3): 51-57.
[9] Li Zhongnan, Wang Yueren, Ma Yiwen, Xiang Yang, Wu Shenghui, Qu Haitao, Li Fulin, Zhang Shuqin, Li Guangfa. Genetic Analysis of Color Traits in Sheath, Silk, Anther and Cob of Isolated Population Based on Maize DH Lines [J]. Crops, 2023, 39(3): 75-79.
[10] Zhang Panpan, Li Chuan, Zhang Meiwei, Zhao Xia, Huang Lu, Liu Jingbao, Qiao Jiangfang. Effects of Nitrification Inhibitor on the Nitrogen Concentration and Yield in Summer Maize Plants and Soil under Reduced Nitrogen Application [J]. Crops, 2023, 39(2): 145-150.
[11] Cui Shuna, Wang Ye, Lu Yuqing, Pan Jinbao, Zhang Qiuzhi. Correlation and Path Analysis of Three Ear Leaves on Yield in Maize [J]. Crops, 2023, 39(2): 201-206.
[12] Meng Yaxuan, Yao Xuhang, Zhou Baoyuan, Liu Yinghui, Yuan Jincheng, Ma Wei, Zhao Ming. Research Progress on Mixed Silage of Zea mays [J]. Crops, 2023, 39(2): 24-29.
[13] Zhang Dongxia, Qin Anzhen. Relationships among Crop Evapotranspiration, Soil Moisture and Temperature in Winter Wheat-Summer Maize Cropping System [J]. Crops, 2022, 38(6): 145-151.
[14] Qiao Jiangfang, Zhang Panpan, Shao Yunhui, Liu Jingbao, Li Chuan, Zhang Meiwei, Huang Lu. Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize [J]. Crops, 2022, 38(6): 186-192.
[15] Guo Huanle, Tang Bin, Li Han, Cao Zhongyang, Zeng Qiang, Liu Liangwu, Chen Zhihui. Comprehensive Evaluation of Phenotypic Traits and Classification of Maize Landraces in Hunan Province [J]. Crops, 2022, 38(6): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!