Crops ›› 2023, Vol. 39 ›› Issue (5): 1-9.doi: 10.16035/j.issn.1001-7283.2023.05.001

    Next Articles

QTL Mapping for Fiber Quality Traits Using Gossypium barbadense Chromosome Segment Introgression Lines

Li Xinghe(), Wang Haitao, Liu Cunjing, Tang Liyuan, Zhang Sujun, Cai Xiao, Zhang Xiangyun, Zhang Jianhong()   

  1. Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs/Hebei Branch of National Cotton Improvement Center, Shijiazhuang 050051, Hebei, China
  • Received:2022-04-18 Revised:2023-04-11 Online:2023-10-15 Published:2023-10-16

Abstract:

Breeding of superior fiber quality cotton is the focus of current cotton breeding. Gossypium barbadense chromosome segment introgression lines (CSILs) are important materials for QTL mapping of fiber quality traits and directional improvement of fiber quality in cotton. In present study, a Hai 7124 introgression lines with Jimian 262 as background were developed, and the correlation analysis and QTLs mapping of five fiber quality traits were performed by CSIL population. The results showed that the significantly positive correlations among the average fiber length of the upper half (FL), the fiber strength (FS) and uniformity index (FU) were observed, and extremely positive correlation between FS and FU. While, a significant negative correlation between FS and FE was detected. It indicated that QTL overlap or linkage between fiber traits might exist. A total of 459 pairs of SSR markers anchored on all 26 chromosomes were used for QTL mapping analysis. Totally, 155 QTLs for five fiber quality traits were identified with explained the phenotypic variation rate of each QTL ranged from 6.57% to 38.72%. These QTLs were located on 13 chromosomes of the At subgroup and seven chromosomes of the Dt subgroup. An average of 7.75 QTLs were detected on each chromosome, among which there were 30 QTLs on Chr.D5, seven QTLs related to FL, MIC and FE, six QTLs related to FU, and three QTLs related to FS. Only one QTL related to FE was detected on Chr.A9. The QTLs identified in this study were partially overlapped or consistent with the reported fiber quality loci, and the linked molecular markers will play an active role in the breeding of high quality cotton varieties.

Key words: Chromosome segment, Introgression lines, QTL mapping, Fiber quality, High-quality cotton

Table 1

Parents values of fiber quality traits in the BC4F2:3 population (Xiaoanshe, 2018)"

性状
Trait
冀棉262
Jimian 262
海7124
Hai 7124
染色体片段导入系Chromosome segment introgression lines
平均值±标准差Mean±SD 幅度Range 偏度Skewness 峰度Kurtosis
上半部平均长度Fiber length (mm) 28.87 33.70 29.48±1.40 24.96~34.44 0.14 -0.07
断裂比强度Fiber strength (cN/tex) 27.30 38.90 27.54±2.41 21.10~35.35 0.33 -0.59
马克隆值MIC 5.12 4.03 4.88±0.49 3.42~6.49 0.03 -0.71
整齐度指数Fiber uniformity (%) 84.80 87.10 84.59±1.29 80.70~89.80 0.01 -0.41
伸长率Fiber elongation (%) 8.30 11.60 8.64±0.73 6.80~12.70 0.19 -0.56

Fig.1

The frequency distribution of fiber quality traits M: mean, SD: standard deviation"

Table 2

Correlation coefficients (Pearson) among fiber quality traits in the BC4F2:3 population"

性状
Trait
上半部
平均长度
Fiber
length
断裂比
强度
Fiber
strength
马克
隆值
MIC
整齐度
指数
Fiber
uniformity
断裂比强度Fiber strength 0.622**
马克隆值MIC -0.141 0.100
整齐度指数Fiber uniformity 0.652** 0.630** 0.277*
伸长率Fiber elongation -0.254* -0.298** -0.184 -0.266*

Table 3

Distribution of QTL clusters"

序号
Code
标记区间
Adjacent marker
关联性状
Related trait
位置区间
Approximate
position (cM)
QTL数量
Number
of QTL
QTL 位置
Position
(cM)
解释表型变异率
Explain the phenotypic
variation rate (%)
加性效应
Additive
effect
A1-cluster-1 NAU2437-HAU3193 FL+FU+MIC+FE 13.3~22.8 4 qFE-A1-1 17.31 24.18 4.71
qFL-A1-1 17.31 26.76 15.31
qFU-A1-1 17.31 27.48 43.07
qMIC-A1-1 17.31 25.13 2.89
A1-cluster-2 HAU3193-NAU3533 FL+FU+MIC+FE 22.8~63.9 4 qFU-A1-2 37.81 27.48 43.07
qFL-A1-2 38.81 26.76 15.31
qFE-A1-2 41.81 24.18 4.71
qMIC-A1-2 41.81 25.13 2.89
A2-cluster-1 NAU5499-CGR5688 FL 19.0~44.7 1 qFL-A2-1 26.01 26.76 15.31
A2-cluster-2 BNL2651-HAU0306 FL+FU+FS 54.2~67.0 3 qFL-A2-2 57.21 26.76 15.31
qFU-A2-1 57.21 27.48 43.07
qFS-A2-1 57.21 25.20 14.33
A3-cluster NAU3016-NAU3083 FU+FS+MIC+FE 105.9~142.7 4 qFU-A3-1 128.91 27.48 43.07
qFS-A3-1 128.91 25.20 14.33
qMIC-A3-1 128.91 25.13 2.89
qFE-A3-1 128.91 24.18 4.71
A4-cluster NAU1151-NAU2235 FU+FS 0.0~14.1 2 qFU-A4-1 4.01 30.00 42.95
qFS-A4-1 4.01 29.86 14.31
A5-cluster-1 NAU3382-NAU1127 FL 48.1~62.2 1 qFL-A5-1 50.71 26.76 15.31
A5-cluster-2 BNL3992-NAU3014 FL+FS+FE 108.2~116.6 3 qFL-A5-2 111.81 6.57 3.86
qFS-A5-1 111.81 6.66 3.74
qFE-A5-1 111.81 6.66 1.24
A5-cluster-3 CIR062-HAU1034 FL+FU+FS 120.2~133.0 3 qFL-A5-3 126.81 30.17 15.34
qFU-A5-1 126.81 30.68 43.03
qFS-A5-2 126.81 29.57 14.49
A6-cluster BNL2569-CIR203 FL+FU+FS+MIC+FE 110.0~118.2 8 qFL-A6-1 111.01 31.09 15.34
qFL-A6-2 116.51 7.30 3.54
qFU-A6-1 111.01 31.49 43.00
qFS-A6-1 111.01 30.19 14.41
qFS-A6-2 117.51 11.19 5.00
qMIC-A3-1 111.01 29.63 2.90
qFE-A6-1 111.01 28.79 4.76
qFE-A6-2 117.51 8.67 1.36
A7-cluster NAU2564-NAU4082 FL+FU+FS+MIC+FE 7.7~32.2 5 qFL-A7-1 27.71 37.87 15.32
qFU-A7-1 27.71 38.72 43.00
qFS-A7-1 27.71 37.28 14.43
qMIC-A7-1 27.71 35.96 2.89
qFE-A7-1 27.71 35.27 4.76
A8-cluster-1 CGR5759-CIR343 FL+FU+MIC+FE 36.2~44.6 4 qFL-A8-1 38.71 26.76 15.31
qFU-A8-1 38.71 27.48 43.07
qMIC-A8-1 38.71 25.13 2.89
qFE-A8-1 38.71 24.18 4.71
A8-cluster-2 BNL3474-CGR5363 FL+FU+MIC+FE 52.2~70.4 7 qFU-A8-2 58.91 27.48 43.07
qFE-A8-2 58.91 24.18 4.71
qFL-A8-2 64.31 26.76 -15.31
qFU-A8-3 64.31 27.48 -43.07
qFS-A8-1 64.31 25.20 -14.33
qMIC-A8-2 64.31 25.13 -2.89
qFE-A8-3 65.91 24.18 -4.71
A9-cluster HAU3241-HAU3365 FE 85.9~93.9 1 qFE-A9-1 86.91 27.53 4.77
A10-cluster NAU3574-STV031 FL+FU+FS+MIC+FE 72.5~113.7 10 qFL-A10-1 74.51 26.76 15.31
qFU-A10-1 74.51 27.48 43.07
qFS-A10-1 74.51 25.20 14.33
qMIC-A10-1 74.51 25.13 2.89
qFE-A10-1 74.51 24.18 4.71
qFL-A10-2 87.91 26.76 15.31
qFU-A10-2 87.91 27.48 43.07
qFS-A10-2 87.91 25.20 14.33
qMIC-A10-2 87.91 25.13 2.89
qFE-A10-2 87.91 24.18 4.71
A11-cluster-1 JESPR201-DPL0103 FL+FU+FS+MIC 81.5~86.7 4 qFL-A11-1 83.51 26.76 15.31
qFU-A11-1 83.51 27.48 43.07
qFS-A11-1 83.51 25.20 14.33
qMIC-A11-1 83.51 25.13 2.89
A11-cluster-2 BNL1408-JESPR296 FL+FU+MIC 92.3~100.9 3 qMIC-A11-2 96.31 25.13 2.89
qFL-A11-2 98.41 26.76 15.31
qFU-A11-2 98.41 27.48 43.07
A11-cluster-3 NAU2599-NAU5505 FL+FU+FS+MIC 105.4~116.0 4 qFL-A11-3 113.41 26.76 15.31
qFU-A11-3 113.41 27.48 43.07
qFS-A11-2 113.41 25.20 14.33
qMIC-A11-3 113.41 25.13 2.89
A12-cluster-1 DPL0057-NAU3561 MIC 4.9~18.5 1 qMIC-A12-1 10.91 25.13 2.89
A12-cluster-2 NAU1151-NAU5492 FU+FS+FE 98.9~104.4 3 qFU-A12-1 100.91 27.48 43.07
qFS-A12-1 100.91 25.20 14.33
qFE-A12-1 100.91 24.18 4.71
A12-cluster-3 NAU3713-NAU5204 FU+FS+MIC+FE 109.6~114.8 4 qFU-A12-2 110.61 27.48 43.07
qFS-A12-2 110.61 25.20 14.33
qMIC-A12-2 110.61 25.13 2.89
qFE-A12-2 110.61 24.18 4.71
A13-cluster BNL4029-NAU4104 FL+FU+FS+MIC+FE 59.9~70.9 10 qFL-A13-1 61.91 26.76 15.31
qFL-A13-2 69.21 26.76 15.31
qFU-A13-1 61.91 27.48 43.07
qFU-A13-2 69.21 27.48 43.07
qFS-A13-1 61.91 25.20 14.33
qFS-A13-2 69.21 25.20 14.33
qMIC-A13-1 61.91 25.13 2.89
qMIC-A13-2 69.21 25.13 2.89
qFE-A13-1 61.91 24.18 4.71
qFE-A13-2 69.21 24.18 4.71
D2-cluster CIR288-CGR5030 FU+FS+FE 45.3~49.2 3 qFU-D2-1 48.61 27.48 43.07
qFS-D2-1 48.61 25.20 14.33
qFE-D2-1 48.61 24.18 4.71
D4-cluster NAU2329-BNL4049 FL+FU+FS 74.6~81.4 3 qFL-D4-1 77.31 26.76 15.31
qFU-D4-1 77.31 27.48 43.07
qFS-D4-1 77.31 25.20 14.33
D5-cluster-1 NAU3095-NAU3649 FL+FU+FS+MIC+FE 10.8~19.5 5 qFL-D5-1 15.71 26.76 15.31
qFU-D5-1 15.71 27.48 43.07
qFS-D5-1 15.71 25.20 14.33
qMIC-D5-1 15.71 25.13 2.89
qFE-D5-1 15.71 24.18 4.71
D5-cluster-2 DPL0893-NAU2636 FL+FU+FS+MIC+FE 37.2~58.0 6 qMIC-D5-2 41.31 28.81 2.92
qFL-D5-2 54.21 26.76 15.31
qFU-D5-2 54.21 29.82 43.04
qFS-D5-2 54.21 25.20 14.33
qMIC-D5-3 54.21 28.81 2.92
qFE-D5-2 54.21 28.11 4.79
D5-cluster-3 NAU3652-HAU3498 FL+FU+FS+MIC+FE 62.0~67.5 5 qFL-D5-3 63.71 26.76 15.31
qFU-D5-3 63.71 29.82 43.04
qFS-D5-3 63.71 25.20 14.33
qMIC-D5-4 63.71 28.81 2.92
qFE-D5-3 63.71 28.11 4.79
D5-cluster-4 BNL390-NAU2741 FL+FU+MIC+FE 83.8~94.6 8 qFL-D5-4 87.81 26.76 15.31
qFU-D5-4 87.81 27.48 43.07
qMIC-D5-5 87.81 25.13 2.89
qFE-D5-4 87.81 24.18 4.71
qFL-D5-5 94.01 26.76 15.31
qFU-D5-5 94.01 27.48 43.07
qMIC-D5-6 94.01 25.13 2.89
qFE-D5-5 94.01 24.18 4.71
D5-cluster-5 NAU5005-BNL3811 FL+FU+MIC+FE 99.8~110.1 4 qFL-D5-6 108.81 26.76 15.31
qFU-D5-6 108.81 27.48 43.07
qMIC-D5-7 108.81 25.13 2.89
qFE-D5-6 108.81 24.18 4.71
D5-cluster-6 BNL285-CGR5803 FE 131.4~157.7 1 qFE-D5-7 133.61 24.18 24.18
D5-cluster-7 NAU4884-NAU2233 FL 162.2~169.4 1 qFL-D5-7 166.01 26.76 15.31
D6-cluster-1 Gh513 FL+FS+MIC 0.0~2.4 3 qFL-D6-1 0.01 26.76 15.31
qFS-D6-1 0.01 25.20 14.33
qMIC-D6-1 0.01 25.13 2.89
D6-cluster-2 BNL3594-DPL0282 FS 10.1~35.1 1 qFS-D6-2 14.71 25.20 14.33
D6-cluster-3 BNL2569-HAU2022 FU 105.5~111.1 1 qFU-D6-1 109.71 27.48 43.07
D9-cluster NAU6323-NAU6764 FL+FU+FS+MIC+FE 47.4~93.1 9 qFL-D9-1 58.41 26.76 15.31
qFL-D9-2 86.01 26.76 15.31
qFU-D9-1 58.41 27.48 43.07
qFU-D9-2 87.01 27.48 43.07
qFS-D9-1 58.41 25.20 14.33
qFS-D9-2 86.01 25.20 14.33
qMIC-D9-1 58.41 25.13 2.89
qMIC-D9-2 86.01 25.13 2.89
qFE-D9-1 58.41 24.18 4.71
D11-cluster-1 NAU3748-BNL3171 FL 0.0~42.4 1 qFL-D11-1 37.01 26.76 26.76
D11-cluster-2 NAU6431-HAU2559 FL+FU+FS+MIC+FE 150.7~188.1 5 qFL-D11-2 166.71 26.76 15.31
qFU-D11-1 166.71 27.48 43.07
qFS-D11-1 166.71 25.20 14.33
qMIC-D11-1 166.71 25.13 2.89
qFE-D11-1 166.71 24.18 4.71
D12-cluster NAU2902-NAU3881 FL+FU+FS+MIC+FE 20.0~56.9 10 qFL-D12-1 29.21 26.76 15.31
qFL-D12-2 39.91 26.76 15.31
qFU-D12-1 29.21 27.48 43.07
qFU-D12-2 39.91 27.48 43.07
qFS-D12-1 29.21 25.20 14.33
qFS-D12-2 39.91 25.20 14.33
qMIC-D12-1 29.21 25.13 2.89
qMIC-D12-2 39.91 25.13 2.89
qFE-D12-1 29.21 24.18 4.71
qFE-D12-2 39.91 24.18 4.71
[1] Fang L, Wang Q, Hu Y, et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nature Genetics, 2017, 49(7):1089-1098.
doi: 10.1038/ng.3887 pmid: 28581501
[2] 杨君, 马峙英, 王省芬. 棉花纤维品质改良相关基因研究进展. 中国农业科学, 2016, 49(22):4310-4322.
doi: 10.3864/j.issn.0578-1752.2016.22.005
[3] 张素君, 李兴河, 唐丽媛, 等. 陆地棉纤维品质性状关联分析及优异等位基因挖掘. 植物遗传资源学报, 2021, 22(1):214-228.
[4] Wang P P, He S, Sun G F, et al. Favorable pleiotropic loci for fiber yield and quality in upland cotton (Gossypium hirsutum). Scientific Reports, 2021, 11(1):15935.
doi: 10.1038/s41598-021-95629-9
[5] 郭宝生, 刘素恩, 赵存鹏, 等. 转FBP7::iaaM基因陆地棉种质冀资139纤维品质性状杂种优势分析. 植物学报, 2021, 56(2):166-174.
[6] Shen X L, Guo W Z, Zhu X F, et al. Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers. Molecular Breeding, 2005, 15(2):169-181.
doi: 10.1007/s11032-004-4731-0
[7] 张先亮, 王坤波, 宋国立, 等. 陆地棉重组近交系中“G6”QTL的初步定位. 棉花学报, 2008, 20(3):192-197.
[8] Li H G, Pan Z E, He S P, et al. QTL mapping of agronomic and economic traits for four F2 populations of upland cotton. Journal of Cotton Research, 2021, 4(1):16-27.
doi: 10.1186/s42397-021-00092-6
[9] 张素君, 周晓栋, 唐丽媛, 等. 杂交棉‘冀1518’纤维品质性状的QTL定位及遗传分析. 分子植物育种, 2021, 19(11):3627-3637.
[10] 齐海坤, 严根土, 王宁, 等. 陆地棉杂交后代产量和品质性状QTL定位. 河北农业大学学报, 2019, 42(1):1-7.
[11] Muhammad J, Jia F, Gong J W, et al. Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. BMC Genomics, 2016, 17:197.
doi: 10.1186/s12864-016-2560-2 pmid: 26951621
[12] 朱协飞, 王鹏, 司占峰, 等. 基于陆地棉背景的海岛棉染色体片段导入系产量性状QTL定位. 作物学报, 2017, 43(12):1784-1790.
doi: 10.3724/SP.J.1006.2017.01784
[13] Hu Y, Chen J D, Fang L, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics, 2019, 51(4):739-748.
doi: 10.1038/s41588-019-0371-5 pmid: 30886425
[14] Wang M J, Tu L L, Yuan D J, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nature Genetics, 2019, 51(2):224-229.
doi: 10.1038/s41588-018-0282-x
[15] 王鹏.陆地棉TM-1背景的海岛棉染色体片段导入系的培育鉴定和纤维强度QTL精细定位. 南京:南京农业大学, 2009.
[16] Zhu W Y, Lin J, Yang D W, et al. Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, Indica recipient 93-11 and japonica donor Nipponbare. Plant Molecular Biology Reporter, 2009, 27 (2):126-131.
doi: 10.1007/s11105-008-0054-3
[17] Zhao L N, Zhou H J, Lu L X, et al. Identification of quantitative trait loci controlling rice mature seed cultivability chromosomal segment substitution lines. Plant Cell Reports, 2009, 28(2):247-256.
doi: 10.1007/s00299-008-0641-7
[18] Ali M L, Paul L, Yu S B, et al. Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O.sativa). Rice, 2010, 3 (4):218-234.
doi: 10.1007/s12284-010-9058-3
[19] 朱亚娟, 王鹏, 郭旺珍, 等. 利用海岛棉染色体片段导入系定位衣分和籽指QTL. 作物学报, 2010, 36(8):1318-1323.
[20] Eshed Y, Zamir D. An introgression line population of lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141(3):1147-1162.
doi: 10.1093/genetics/141.3.1147 pmid: 8582620
[21] 何风华, 席章营, 曾瑞珍, 等. 利用单片段代换系鉴定水稻株高及其构成因素的QTL. 中国水稻科学, 2005, 19(5):387-392.
[22] 王立秋, 赵永锋, 薛亚东, 等. 玉米衔接式单片段导入系群体的构建和评价. 作物学报, 2007, 33(4):663-668.
[23] 吴新儒, 刘树兵, 刘爱峰, 等. 小麦重要农艺性状QTL近等基因导入系的选育. 麦类作物学报, 2007, 27(4):583-588.
[24] 郭志军, 赵云雷, 陈伟, 等. 陆海高代回交群体抗黄萎病QTL定位. 棉花学报, 2019, 31(4):327-334.
[25] 戎福喜, 汤丽魁, 唐媛媛, 等. 海陆渐渗系棉花吐絮期叶绿素含量、荧光参数及相关性状的QTL定位分析. 棉花学报, 2015, 27(5):417-426.
[26] 赵君, 刘剑光, 吴巧娟, 等. 利用染色体片段代换系定位棉花抗黄萎病QTL. 棉花学报, 2014, 26(6):499-505.
[27] Wang P, Zhu Y J, Song X L, et al. Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theoretical and Applied Genetics, 2012, 124(8):1415-1428.
doi: 10.1007/s00122-012-1797-7
[28] Cao Z B, Wang P, Zhu X F, et al. SSR marker-assisted improvement of fiber qualities in Gossypium hirsutum using G. barbadense introgression lines. Theoretical and Applied Genetics, 2014, 127(3):587-594.
doi: 10.1007/s00122-013-2241-3
[29] 郭晓豪, 王寒涛, 魏鑫, 等. 基于两个陆地棉低世代群体定位纤维品质相关QTL. 棉花学报, 2021, 33(1):33-41.
[30] Zhao L, Lv Y D, Cai C P, et al. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genomics, 2012, 13:539.
doi: 10.1186/1471-2164-13-539 pmid: 23046547
[31] 张军, 武耀廷, 郭旺珍, 等. 棉花微卫星标记的PAGE/银染快速检测. 棉花学报, 2000, 12(5):267-269.
[32] Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136(4):1457-1468.
doi: 10.1093/genetics/136.4.1457 pmid: 8013918
[33] McCouch S, Cho Y, Yano M, et al. Report on QTL nomenclature. Rice Genetics Newsletter, 1997, 14:11-13.
[34] Saha S, Wu J X, Jenkins J, et al. Effect of chromosome substitutions from Gossypium barbadense L. 3-79 into G. hirsutum L. TM-1 on agronomic and fiber traits. Journal of Cotton Science, 2004, 8:162-169.
[35] 杨泽茂, 李骏智, 李爱国, 等. 利用高代回交和分子标记辅助选择构建棉花染色体片段代换系. 分子植物育种, 2009, 7(2):233-241.
[36] 司占峰. 海岛棉背景的陆地棉染色体片段导入系培育及QTL定位. 南京:南京农业大学, 2016.
[37] 董承光, 王娟, 周小凤, 等. 基于表型性状的陆地棉种质资源遗传多样性分析. 植物遗传资源学报, 2016, 17(3):438-446.
doi: 10.13430/j.cnki.jpgr.2016.03.006
[38] 徐敏, 胡玉枢, 李憬霖, 等. 早熟棉创新种质资源主要性状聚类及相关分析. 作物杂志, 2017(1):25-31.
[39] 马留军, 石玉真, 兰孟焦, 等. 棉花陆海染色体片段代换系群体纤维产量与品质表现的评价. 棉花学报, 2013, 25(6):486-495.
[40] 代攀虹, 孙君灵, 何守朴, 等. 陆地棉核心种质表型性状遗传多样性分析及综合评价. 中国农业科学, 2016, 49(19):3694-3708.
doi: 10.3864/j.issn.0578-1752.2016.19.003
[41] 李慧琴, 于娅, 王鹏, 等. 270份陆地棉种质资源农艺性状与品质性状的遗传多样性分析. 植物遗传资源学报, 2019, 20 (4):903-910.
[42] 焦梦佳, 陈煜, 宋章强, 等. 利用棉花优质渐渗系进行纤维品质性状和衣分的QTL定位. 植物遗传资源学报, 2020, 21(3):716-726.
doi: 10.13430/j.cnki.jpgr.20190919001
[43] Xu P, Gao J, Cao Z B, et al. Fine mapping and candidate gene analysis of qFL-chr1, a fiber length QTL in cotton. Theoretical and Applied Genetics, 2017, 130(6):1309-1319.
doi: 10.1007/s00122-017-2890-8
[44] Wang F R, Xu Z Z, Sun R, et al. Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L.. Molecular Breeding, 2013, 32(3):547-562.
doi: 10.1007/s11032-013-9888-y
[45] Chen Y, Liu G D, Ma H H, et al. Identification of introgressed alleles conferring high fiber quality derived from Gossypium barbadense L. in secondary mapping populations of G. hirsutum L.. Frontiers in Plant Science, 2018, 9:1023-1023.
doi: 10.3389/fpls.2018.01023 pmid: 30073008
[1] Ma Chunmei, Tian Yangqing, Zhao Qiang, Li Jiangyu, Wu Xueqin. Effects of Plant Growth Regulator Compound on Cotton Yield [J]. Crops, 2022, 38(6): 181-185.
[2] Feng Changhui, Jiao Chunhai, Zhang Youchang, Bie Shu, Qin Hongde, Wang Qiongshan, Zhang Jiaohai, Wang Xiaogang, Xia Songbo, Lan Jiayang, Chen Quanqiu. Genetic Analysis for Yield and Fiber Quality Traits in Upland Cotton Based on Partial NCII Mating Design [J]. Crops, 2022, 38(5): 13-21.
[3] Xu Min, Jin Lulu, Li Ruichun, Sun Liyuan, Wang Zisheng. Study on Cotton Chemical Topping in Liaohe Cotton Area [J]. Crops, 2022, 38(5): 201-207.
[4] Luo Hanmin, Xiong Faqian, Qiu Lihang, Liu Jing, Duan Weixing, Gao Yijing, Qin Xiayan, Wu Jianming, Li Yangrui, Liu Junxian. Application Study of Molecular Markers Associated with Traits in Sugarcane Molecular Breeding [J]. Crops, 2022, 38(2): 35-43.
[5] Yan Xiaocui, Duan Zhenying, Yang Huali, Yao Zhanjun, Li Zaifeng. QTLs Mapping of Leaf Rust Resistance in Wheat Variety Zhoumai 22 [J]. Crops, 2022, 38(2): 69-74.
[6] Zhang Wen, Liu Quanyi, Zeng Qingtao, Cai Xiaoli, Feng Yang, Lu Tao. Effects of Different Row Spacings on Boll Characteristics and Fiber Quality of Machine Picked Cotton [J]. Crops, 2021, 37(2): 147-152.
[7] Abudukadier Kuerban,Xia Dong,Zhang Jusong,Cui Jianping,Guo Rensong,Lin Tao. Effects of Drip Irrigation Frequency on Yield and Quality of Chemical Defoliated Cotton [J]. Crops, 2019, 35(4): 113-119.
[8] Tang Liyuan,Li Xinghe,Zhang Sujun,Wang Haitao,Liu Cunjing,Zhang Xiangyun,Zhang Jianhong. QTL Mapping for Photosynthesis Related Traits in Upland Cotton [J]. Crops, 2018, 34(5): 85-90.
[9] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province [J]. Crops, 2018, 34(4): 143-148.
[10] Yongping Zhou,Haiyan Tian,Haiying Du,Chaohong Ge,Jianzhao Yan,Hui Sun,Shuxin Shi. Influence of Different Planting Densities on Growth, Boll Setting, Yield and Quality of Cotton [J]. Crops, 2017, 33(4): 84-88.
[11] Xue Jiang,Xiaosong Ma,Lijun Luo,Hongyan Liu. QTL Mapping of Phenotypic Traits under Drought Stress Simulated by PEG-6000 in Rice Seedlings [J]. Crops, 2016, 32(5): 31-37.
[12] Sujun Zhang,Liyuan Tang,Cunjing Liu,Zhenxing Jiang,Jina Chi,Haiyan Tian,Xinghe Li,Jianhong Zhang,Xiangyun Zhang. Association Analysis of Fiber Quality with SSR Markers in Gossypium barbadense L. [J]. Crops, 2016, 32(4): 93-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!