Crops ›› 2024, Vol. 40 ›› Issue (4): 144-151.doi: 10.16035/j.issn.1001-7283.2024.04.018

Previous Articles     Next Articles

Mechanism of Exogenous Brassinolide in Alleviating Drought Stress Injury at Panicle Differentiation Stage in Foxtail Millet

Du Jie(), Feng Yu, Xia Qing, Zhi Hui, Wang Wenxia()   

  1. Department of Life Sciences, Lüliang University, Lüliang 033000, Shanxi, China
  • Received:2023-12-25 Revised:2024-06-11 Online:2024-08-15 Published:2024-08-14

Abstract:

A pot experiment was conducted to investigate the regulatory effects of brassinolide on photosynthesis, antioxidant systems, and nitrogen metabolism in the high-quality foxtail millet variety, Jingu 21, under drought stress during panicle differentiation. Three treatment groups were established: a normal control (CK), a drought stress after water spraying (DS), and a drought stress after brassinolide spraying (BR). Upon reaching panicle differentiation, the treatment groups were separately sprayed with water and 0.1 μmol/L brassinolide on the leaf surface. After the cessation of drought stress, parameters including photosynthesis indices, hydrogen peroxide (H2O2), malondialdehyde (MDA) contents, osmotic regulators, antioxidant enzyme activity, nitrogen metabolism key enzyme activity, yield, and its components were measured and analyzed for all treatments. The results showed that drought stress significantly impeded the growth and development of foxtail millet during the panicle differentiation stage, but the application of exogenous brassinolide could mitigate these adverse effects. Yield and grain weight per panicle were increased by 17.29% and 8.62%, respectively, while the empty seed rate was decreased by 18.46%. Several parameters like net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), chlorophyll content, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) activities, soluble sugar, free proline, nitrate reductase (NR), glutamine synthase (GS), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH) activities increased to varying degrees. H2O2 and MDA contents were significantly reduced. Consequently, spraying 0.1 μmol/L brassinolide could alleviate the reduction of foxtail millet growth and yield under drought stress during panicle differentiation period by increasing photosynthesis, chlorophyll content, osmotic regulators, antioxidant enzymes, nitrogen metabolism enzymes, and reducing reactive oxygen species and MDA content, facilitating reactive oxygen radicals scavenging, and maintaining the balance of carbon and nitrogen metabolism in the plant.

Key words: Foxtail millet, Drought stress, Brassinolide, Yield, Nitrogen metabolism

Table 1

Effects of brassinosteroid on yield and its components under drought stress in foxtail millet"

处理
Treatment
穗长
Panicle length
(cm)
穗粒重
Grain weight per
panicle (g)
穗码数
Spikelet number
per panicle
千粒重
1000-grain
weight (g)
空秕率
Sterile grain
rate (%)
产量
Yield
(kg/hm2)
CK 23.16±0.59a 19.01±0.63a 108.67±1.43a 3.13±0.09a 10.13±0.14c 4453.97±114.01a
DS 23.03±0.76a 17.06±0.75b 107.33±3.26a 3.01±0.07b 15.98±0.11a 3145.95±83.92c
BR 23.04±1.08a 18.53±0.43a 108.33±3.43a 3.05±0.08b 13.03±0.16b 3689.85±102.61b

Fig.1

Box-plot of the effects of brassinosteroid on foxtail millet yield under drought stress The horizontal line in the box-plot represents the median,“**”represents significant differences at the P < 0.05 level."

Fig.2

Effects of brassinosteroid on photosynthesis of foxtail millet under drought stress Different lowercase letters represent significant differences at the P < 0.05 level, the same below."

Fig.3

Effects of brassinosteroid on SPAD, MDA and osmoregulatory substances contents of foxtail millet under drought stress"

Fig.4

Effects of brassinosteroid on H2O2 content and antioxidant enzyme activity of foxtail millet under drought stress"

Fig.5

Effects of brassinosteroid on nitrogen metabolism of foxtail millet under drought stress"

[1] 赵利蓉, 马珂, 张丽光, 等. 不同生态区谷子品种农艺性状和品质分析. 作物杂志, 2022(2):44-53.
[2] Pan J W, Zhen L, Wang Q G, et al. Comparative proteomic investigation of drought responses in foxtail millet. BMC Plant Biology, 2018, 18(1):315.
doi: 10.1186/s12870-018-1533-9 pmid: 30497407
[3] Wang Y Q, Li L, Tang S, et al. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet. BMC Genetics, 2016, 17(1):57.
[4] 刘园, 刘布春, 梅旭荣, 等. 区域粮食产量因灾损失评估之北方五省灾情-产量模型再检验. 中国农业气象, 2023, 44(11):1009-1021.
[5] Qin L, Chen E Y, Li F F, et al. Genome-wide gene expression profiles analysis reveal novel insights into drought stress in foxtail millet (Setaria italica L.). International Journal of Molecular Sciences, 2020, 21(22):8520.
[6] 张艾英, 郭二虎, 范惠萍, 等. 谷子不同生育时期水分胁迫抗旱生理特性研究. 山西农业科学, 2014, 42(7):669-671.
[7] 李丽丽, 侯智远, 卢海博, 等. 干旱胁迫和复水对‘张杂谷3号’光合特性和产量的影响. 河北农业大学学报, 2017, 40(4):19-24.
doi: 10.13320/ j.cnki.jauh.2017.0075
[8] Wang J, Sun Z X, Wang X N, et al. Transcriptome-based analysis of key pathways relating to yield formation stage of foxtail millet under different drought stress conditions. Frontiers in Plant Science, 2022(13):1110910.
[9] Wang Q, Yu F F, Xie Q. Balancing growth and adaptation to stress: Crosstalk between brassinosteroid and abscisic acid signaling. Plant Cell and Environment, 2020, 43(10):2325-2335.
[10] Chen J N, Nolan T M, Ye H X, et al. Arabidopsis wrky46, wrky54 and wrky70 transcription factors are involved in brassinosteroid- regulated plant growth and drought responses. Plant Cell, 2017, 29(6):1425-1439.
[11] Krishna P, Prasad B D, Rahman T. Brassinosteroid action in plant abiotic stress tolerance. Methods in Molecular Biology, 2017, 1564:193-202.
doi: 10.1007/978-1-4939-6813-8_16 pmid: 28124256
[12] Huang J Y, Ma S J, Zhang K Y, et al. Genome-wide identification of gramineae brassinosteroid-related genes and their roles in plant architecture and salt stress adaptation. International Journal of Molecular Sciences, 2022, 23(10):5551.
[13] 缐旭林, 张德, 张仲兴, 等. 2,4-表油菜素内酯对干旱胁迫下垂丝海棠生理特性的影响. 干旱地区农业研究, 2022, 40(3):37-45.
[14] Lone W A, Majeed N, Yaqoob U, et al. Exogenous brassinosteroid and jasmonic acid improve drought tolerance in Brassica rapa L. genotypes by modulating osmolytes, antioxidants and photosynthetic system. Plant Cell Reports, 2022, 41(3):603-617.
[15] Huang L P, Zhang L, Zeng R E, et al. Brassinosteroid priming improves peanut drought tolerance via eliminating inhibition on genes in photosynthesis and hormone signaling. Genes (Basel), 2020, 11(8):919.
[16] Tanveer M, Shahzad B, Sharma A, et al. 24-Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants. Plant Physiology and Biochemistry, 2019, 135:295-303.
doi: S0981-9428(18)30560-6 pmid: 30599306
[17] 王永丽, 王珏, 杜金哲, 等. 不同时期干旱胁迫对谷子农艺性状的影响. 华北农学报, 2012, 27(6):125-129.
doi: 10.3969/j.issn.1000-7091.2012.06.025
[18] Zhang R L, Zhi H, Li Y H, et al. Response of multiple tissues to drought revealed by a weighted gene co-expression network analysis in foxtail millet [Setaria italica (L.) P. Beauv.]. Frontiers in Plant Science, 2021, 12:746166.
[19] 权梦萍, 徐佳慧, 尹佳茗, 等. 油菜素内酯调控植物响应非生物逆境胁迫的生理机制. 植物保护学报, 2023, 50(1):22-31.
[20] Ghasemi A, Farzaneh S, Moharramnejad S, et al. Impact of 24-epibrassinolide, spermine, and silicon on plant growth, antioxidant defense systems, and osmolyte accumulation of maize under water stress. Scientific Reports, 2022, 12(1):14648.
doi: 10.1038/s41598-022-18229-1 pmid: 36030324
[21] 陈燕华, 王亚梁, 朱德峰, 等. 外源油菜素内酯缓解水稻穗分化期高温伤害的机理研究. 中国水稻科学, 2019, 33(5):457-466.
doi: 10.16819/j.1001-7216.2019.9036
[22] 白明义, 彭金荣, 傅向东. 赤霉素和油菜素内酯信号通路双重调控助力小麦新一轮“绿色革命”. 植物学报, 2023, 58(2):194-198.
doi: 10.11983/CBB23038
[23] 谢云灿, 何孝磊, 杜鹏, 等. 外源油菜素内酯对高温胁迫下大豆光合特性及产量品质的影响. 大豆科学, 2017, 36(2):237-243.
[24] 陈燕华, 王亚梁, 陈惠哲, 等. 油菜素甾醇类化合物对水稻抗逆的作用及其机制研究进展. 作物研究, 2020, 34(6):597-604.
[25] Mahmood T, Khalid S, Abdullah M, et al. Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells, 2019, 9(1):105.
[26] Dalal V K, Tripathy B C. Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant Cell Environment, 2012, 35(9):1685-1703.
[27] Cao X N, Hu Y L, Song J, et al. Transcriptome sequencing and metabolome analysis reveals the molecular mechanism of drought stress in millet. International Journal of Molecular Sciences, 2022, 23(18):10972.
[28] 任传友, 姜卓群, 苏小旋, 等. 水分胁迫/复水对谷子光合特性及产量影响. 应用气象学报, 2021, 32(4):456-467.
[29] 肖瑞雪, 郭丽丽, 贾琦石, 等. 油菜素内酯调控植物生长发育及产量品质研究进展. 江苏农业科学, 2019, 47(10):16-21.
[30] 魏鑫, 倪虹, 张会慧, 等. 外源脱落酸和油菜素内酯对干旱胁迫下大豆幼苗抗旱性的影响. 中国油料作物学报, 2016, 38 (5):605-610.
doi: 10.7505/j.issn.1007-9084.2016.05.010
[31] Gruszka D, Janeczko A, Dziurka M, et al. Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reaction to drought stress. Frontiers in Plant Science, 2016, 7:1824.
pmid: 27994612
[32] 王福祥, 肖开转, 姜身飞, 等. 干旱胁迫下植物体内活性氧的作用机制. 科学通报, 2019, 64(17):1765-1779.
[33] 郑清岭, 杨忠仁, 张凤兰, 等. 沙芥属植物活性氧清除系统对干旱胁迫的响应. 西北植物学报, 2018, 38(9):1674-1682.
[34] 陈敏菊, 孟彦, 孟宪政. 干旱胁迫对甜高粱幼苗光合色素、保护酶活性及活性氧代谢的影响. 天津农业科学, 2021, 27(9):1-4.
[35] 阮英慧, 董守坤, 刘丽君, 等. 干旱胁迫下油菜素内酯对大豆花期生理特性的影响. 作物杂志, 2011(6):33-37.
[36] Perez-Borroto L S, Guzzo M C, Posada G, et al. A brassinosteroid functional analogue increases soybean drought resilience. Scientific Reports, 2022, 12(1):11294.
doi: 10.1038/s41598-022-15284-6 pmid: 35788151
[37] 曹亮, 杜昕, 于高波, 等. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析. 作物学报, 2021, 47(9):1779-1790.
doi: 10.3724/SP.J.1006.2021.04151
[38] Zhao C F, Guo H X, Wang J R, et al. Melatonin enhances drought tolerance by regulating leaf stomatal behavior, carbon and nitrogen metabolism, and related gene expression in maize plants. Frontiers in Plant Science, 2021, 12:779382.
[39] 于肖, 牛佳红, 陈二影, 等. 施氮与不同时期水分胁迫对谷子生长及生理生化特性的影响. 山东农业科学, 2022, 54(1):61-67.
[40] 李彩凤, 刘丹, 邹春雷, 等. 盐碱胁迫下喷施BR对甜菜光系统Ⅱ和氮代谢关键酶的影响. 东北农业大学学报, 2018, 49(8):39-47.
[41] 马月花, 郭世荣, 杜南山, 等. 外源24-表油菜素内酯对低氧胁迫下黄瓜幼苗氮代谢的影响. 南京农业大学学报, 2015, 38(4):538-545.
[1] Yuan Shuai, He Mingjuan, Cui Can, Han Yu, Yu Peng, Yi Zhenxie. Effects of Different Base Application Amounts of Calcium- Magnesium Hydrotalcite in Early Rice on Yield and Rice Quality of Double-Cropping Rice in Southern Hunan [J]. Crops, 2024, 40(4): 113-120.
[2] Wang Wenxia, Chang Bokai, Xia Qing, Zhi Hui, Du Jie. Effects of Foliar Spraying Selenium on Physiological Characteristics, Yield and Quality of Flax [J]. Crops, 2024, 40(4): 130-137.
[3] Yuan Di, Zhi Hui, Wang Haigang, Zhang Hui, Yao Qi, Liang Hongkai, Wang Junjie, Chen Ling, Diao Xianmin, Jia Guanqing. Genetic Diversity Analysis and Comprehensive Evaluation of Registered Varieties of Foxtail Millet in China [J]. Crops, 2024, 40(4): 14-23.
[4] Cao Li, Yang Jianhui, Zhang Li, Ren Wei, Cao Zhengpeng, Ma Fang, Guan Yong. Effects of Different Concentrations of Nano-Selenium Fertilizer on Yield, Quality and Selenium Content of Broccoli [J]. Crops, 2024, 40(4): 152-157.
[5] Zhang Lijuan, Qin Yukun, Chen Junying. Effects of Nitrogen Application Rate on Cotton Yield Formation and Nitrogen Utilization Efficiency under Rape-Cotton Double Cropping Straw Returning Condition [J]. Crops, 2024, 40(4): 158-163.
[6] Ren Liang, Fang Mengying, Wu Zhihai, Dong Xuerui, Lu Lin, Yan Peng, Dong Zhiqiang. Effects of Ethylene-Chlormequat-Potassium (ECK) on Sorghum [Sorghum bicolor (L.) Moench.] Lodging Resistance and Yield [J]. Crops, 2024, 40(4): 164-171.
[7] Zhou Zhou, Shen Xinya, Wang Jun, Liu Lijun. Effects of Combination of Controlled-Release Fertilizer and Common Urea on Yield, Nitrogen Use Efficiency and Grain Quality in Rice [J]. Crops, 2024, 40(4): 180-187.
[8] Lü Bo, Ding Liang, Guo Cong, Chen Feng, Zhou Haiping, Wang Xuesong, Dong Xiaolin, Xiang Fayun. Effects of Compound Microbial Fertilizer on Soil Nutrients and Rhizosphere Bacterial Community in Cotton Field [J]. Crops, 2024, 40(4): 209-215.
[9] Li Chunhua, Wu Han, Jiayangduola , Wang Chunlong, Wang Yanqing, Ren Changzhong. Effects of Sowing Date on Agronomic Traits and Yield of Common Buckwheat Varieties (Lines) [J]. Crops, 2024, 40(4): 216-222.
[10] Wang Ruopeng, Lü Wei, Liu Wenping, Wen Fei, Han Junmei, Liu Xiaxia. Effects of Different Cultivation Modes on Yield of Sesame and Water and Heat of Soil [J]. Crops, 2024, 40(4): 247-252.
[11] Xie Huifang, Wei Menghan, Song Zhongqiang, Liu Jinrong, Wang Suying, Xing Lu, Wang Shujun, Liu Haiping, Jia Xiaoping, Song Hui. Analyzing of the Mixed Inheritance Model of Major Gene Plus Polygene of Main Traits in Foxtail Millet [J]. Crops, 2024, 40(4): 82-89.
[12] Guo Haibin, Zhang Jungang, Wang Wenwen, Xue Zhiwei, Xu Haitao, Feng Xiaoxi, Wang Bingong, Wang Chengye. Response of Photosynthetic Characteristics, Root Growth and Yield of Summer Maize to Subsoiling and Increasing Density in Lime Concretion Black Soil [J]. Crops, 2024, 40(3): 109-118.
[13] Liu Yue, Jia Yonghong, Yu Yuehua, Zhang Jinshan, Wang Runqi, Li Dandan, Shi Shubing. Effects of Nitrogen Fertilizer Management on Growth and Development, Yield and Quality of Peanut in Northern Xinjiang [J]. Crops, 2024, 40(3): 119-126.
[14] Zhang Suyu, Yue Junqin, Li Xiangdong, Jin Haiyang, Ren Dechao, Yang Mingda, Shao Yunhui, Wang Hanfang, Fang Baoting, Zhang Deqi, Shi Yanhua, Qin Feng, Cheng Hongjian. Effects of Nitrogen Application on Photosynthetic Rate, Dry Matter Accumulation after Anthesis and Yield of Zhengmai 366 [J]. Crops, 2024, 40(3): 127-132.
[15] Song Hui, Wang Tao, Xing Lu, Liu Junfang, Zhang Yang, Liu Jinrong, Chen Hongqi, Feng Baili. Transcriptome Analysis of Different Foxtail Millet (Setaria italica L.) Varieties Treated with Imazapic Herbicide [J]. Crops, 2024, 40(3): 13-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!