Crops ›› 2024, Vol. 40 ›› Issue (4): 138-143.doi: 10.16035/j.issn.1001-7283.2024.04.017

Previous Articles     Next Articles

Study on the Effects of Different Treatments on Mechanical Harvest Broken Rate of Maize Grains

Yang Ke(), Jiang Chunxia, Zhang Wei, Liu Enke, Zhai Guangqian, Zhang Dongmei()   

  1. Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University / Key Laboratory of Sustainable Dryland Agriculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs / State Key Laboratory of Sustainable Dryland Agriculture (in Preparation) / Shanxi Key Laboratoryof Sustainable Dryland Agriculture, Taiyuan 030031, Shanxi, China
  • Received:2023-11-09 Revised:2024-02-28 Online:2024-08-15 Published:2024-08-14

Abstract:

In order to study the effects of different treatments on the main grain broken rate, analyze the relationship between the grain broken rate of laboratory and actual machine harvest, and explore a convenient way to test the broken rate, the experimental settings including varieties, nitrogen application rate, sowing date and harvest period, and the broken rate under different pore size sieves of indoor ground grains were studied respectively, and the curve of the broken rate in mechanical harvesting process was simulated. The results showed that there were obvious differences of grain broken rate between different varieties, nitrogen application rates, sowing dates and harvest dates, and the selection of grain type keratin, 25% reduction in nitrogen and appropriate postponement of harvest date could improve the broken resistance of grains. The moisture content and the broken rate at the time of mechanical harvesting had a quadratic relationship, when the moisture content was 21.95%, the lowest broken rate was 4.32%, and the moisture content and the broken rate calculated by the sieve with a grinding pore size of 2.36 mm in the laboratory had a quadratic relationship, the regression curve equation analysis showed similar result. The broken rate (2.36 mm) can be tested by indoor grinding, which mimics the broken rate of actual mechanical harvesting, thus providing a more flexible and convenient way for selecting suitable varieties for harvesting to test the grain broken rate.

Key words: Maize, Grain harvesting, Resistance to breakage, Broken rate

Table 1

Experimental maize cultivars"

试验地点
Test region
个数
Number
品种
Cultivar
东阳基地
Dongyang base


14



华美1号、广德5号、瑞普909、京农科728、大丰30、迪卡517、金科玉3306、DF607、郑单958、东单913、粒收1号、中地88、华农887、DF617
定襄神山乡
Shenshan, Dingxiang
4
金科玉3306、迪卡517、中地88、DF607

Table 2

Effects of different varieties on grain broken rates of maize %"

品种
Cultivar
破碎率Broken rate 均值
Mean
籽粒类型
Grain type
1.00 mm 2.00 mm 2.36 mm
华美1号Huamei 1 35.6aA 57.7aA 76.1aA 56.5 马齿型、粉质
广德5号Guangde 5 28.9bB 47.3bcBC 66.5bcBC 47.4 马齿型、粉质
瑞普909 Ruipu 909 28.4bcBC 49.7bB 69.4bAB 49.2 半马齿型、偏粉质
京农科728 Jingnongke 728 28.1bcdBC 44.1cdCD 61.5cdC 44.6 半马齿型、偏粉质
大丰30 Dafeng 30 27.7bcdBC 44.9cdBCD 63.6cdBC 45.4 半马齿型、偏粉质
迪卡517 Dika 517 27.6bcdBC 44.6cdCD 64.1bcdBC 45.4 半马齿型、半粉质半角质
金科玉3306 Jinkeyu 3306 27.4bcdBC 43.7cdCD 60.9cdC 44.0 半马齿型、半粉质半角质
DF617 27.3bcdBC 43.7cdCD 62.1cdC 44.4 半马齿型、半粉质半角质
郑单958 Zhengdan 958 26.8bcdBC 43.6cdCD 62.1cdC 44.2 半马齿型、半粉质半角质
东单913 Dongdan 913 26.7bcdBC 43.2cdCD 62.8cdBC 44.2 半马齿型、半粉质半角质
粒收1号Lishou 1 26.6bcdBC 44.0cdCD 61.7cdC 44.1 半马齿型、半粉质半角质
中地88 Zhongdi 88 26.1cdBC 44.5cdCD 64.6bcdBC 45.1 半马齿型、半粉质半角质
华农887 Huanong 887 25.9cdC 42.5dCD 61.7cdC 43.4 半马齿型、半粉质半角质
DF607 25.8dC 42.1dD 59.9dC 42.6 半马齿型、偏角质
均值Mean 27.8 45.4 64.1 45.8

Table 3

Effects of different nitrogen application rates on grain broken rates of maize %"

施氮处理
Nitrogen application treatment
破碎率Broken rate 均值
Mean
1.00 mm 2.00 mm 2.36 mm
N0 31.2aA 52.6aA 74.0aA 52.6
N1 28.8bB 45.4bB 64.3bB 45.8
N2 28.3bcB 44.8bB 63.4bB 45.5
N3 28.2cB 44.7bB 63.3bB 45.4

Table 4

Effects of different sowing dates on grain broken rates of maize %"

播期(月-日)
Sowing date (month-day)
破碎率Broken rate 均值
Mean
1.00 mm 2.00 mm 2.36 mm
04-16 28.2bA 44.4bA 66.4aA 46.6
04-23 27.9bcA 43.3cA 62.2bcA 44.5
04-30 29.4aA 45.6aA 64.8bA 46.6
05-07 27.9cA 43.5bcA 61.6cA 44.3
05-14 28.7bA 44.8bA 65.3bA 46.3

Fig.1

Relationship between different harvest dates and broken rates"

Fig.2

Relationship between grain moisture content and actual broken rate of machine harvest"

Fig.3

Relationship between grain moisture content and broken rate of indoor grinding"

[1] 李少昆. 我国玉米机械粒收质量影响因素及粒收技术的发展方向. 石河子大学学报(自然科学版), 2017, 35(3):265-272.
[2] 赵明, 李少昆, 董树亭, 等. 美国玉米生产关键技术与中国现代玉米生产发展的思考——赴美国考察报告. 作物杂志, 2011(2):1-3.
[3] 裴建杰, 范国昌. 对玉米收获中籽粒破碎和损失的影响因素试验研究. 河北农业大学学报, 2012, 35(1):102-105.
[4] 张东兴. 农机农艺技术融合推动我国玉米机械化生产的发展. 农业技术与装备, 2011, 213(9):22-25.
[5] 柳枫贺, 王克如, 李健, 等. 影响玉米机械收粒质量因素的分析. 作物杂志, 2013(4):116-119.
[6] 薛军, 李璐璐, 张万旭, 等. 玉米穗轴机械强度及其对机械粒收籽粒破碎率的影响. 中国农业科学, 2018, 51(10):1868-1877.
doi: 10.3864/j.issn.0578-1752.2018.10.006
[7] 雷沃重工股份有限公司, 中国农业机械化科学研究院, 河北英虎农业机械制造有限公司, 等. 玉米收获机械:GB/T 21962-2020. 国家市场监督管理总局,国家标准化管理委员会, 2020.
[8] 柴宗文, 王克如, 郭银巧, 等. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017, 50(11):2036-2043.
doi: 10.3864/j.issn.0578-1752.2017.11.009
[9] 谢瑞芝, 雷晓鹏, 王克如, 等. 黄淮海夏玉米子粒机械收获研究初报. 作物杂志, 2014(2):76-79.
[10] 李璐璐, 谢瑞芝, 范盼盼, 等. 郑单958与先玉335子粒脱水特征研究. 玉米科学, 2016, 24(2):57-61.
[11] 王克如, 李璐璐, 郭银巧, 等. 不同机械作业对玉米子粒收获质量的影响. 玉米科学, 2016, 24(1):114-116.
[12] 王克如, 李少昆. 玉米机械粒收破碎率研究进展. 中国农业科学, 2017, 50(11):2018-2026.
doi: 10.3864/j.issn.0578-1752.2017.11.007
[13] 李少昆, 王克如, 谢瑞芝, 等. 玉米子粒机械收获破碎率研究. 作物杂志, 2017(2):76-80.
[14] 王克如, 李少昆. 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017, 50(11):2027-2035.
doi: 10.3864/j.issn.0578-1752.2017.11.008
[15] 易克传, 朱德文, 张新伟, 等. 含水率对玉米籽粒机械化直接收获的影响. 中国农机化学报, 2016, 37(11):78-80.
[16] 宫帅, 郭正宇, 张中东, 等. 山西玉米子粒含水率与机械粒收收获质量的关系分析. 玉米科学, 2018, 26(4):63-67.
[17] 董朋飞, 侯俊峰, 王克如, 等. 利用研磨法测试玉米子粒耐破碎性的初步研究. 玉米科学, 2018, 26(6):116-121.
[18] 王克如, 李璐璐, 鲁镇胜, 等. 黄淮海夏玉米机械化粒收质量及其主要影响因素. 农业工程学报, 2021, 37(7):1-7.
[19] Waelti H, Buchele W F. Factors affecting corn kernel damage in combine cylinders. Transactions of the ASAE, 1969, 12(1):55-59.
[20] Paulsen M R, Hill L D, White D G, et al. Breakage susceptibility of corn-belt genotypes. Transactions of the ASAE, 1983, 26(6):1830-1836.
[21] Mensah J K, Herum F L, Blaisdell J L, et al. Effect of drying conditions on impact shear resistance of selected corn varieties. Transactions of the ASAE, 1981, 24(6):1568-1572.
[22] Moentono M D, Darrah L L, et al. Effects of selection for stalk strength on responses to plant-density and level of nitrogen application in maize. Maydica, 1984, 29(4):431-452.
[23] Gunasekaran S, Paulsen M R. Breakage resistance of corn as a function of drying rates. Paper-American Society of Agricultural Engineers (USA), 1985, 28(6):2071-2076.
[24] Maddonni G A, Otegui M E, et al. Intra-specific competition in maize: Contribution of extreme plant hierarchies to grain yield, grain yield components and kernel composition. Field Crop Research, 2006, 97(2/3):155-166.
[25] 张磊, 孔丽丽, 侯云鹏, 等. 施氮水平对玉米开花后干物质积累、转运及土壤无机氮含量的影响. 玉米科学, 2020, 28(4):155-164.
[26] 李璐璐, 薛军, 谢瑞芝, 等. 夏玉米籽粒含水率对机械粒收质量的影响. 作物学报, 2018, 44(12):1747-1754.
doi: 10.3724/SP.J.1006.2018.01747
[27] 李璐璐, 雷晓鹏, 谢瑞芝, 等. 夏玉米机械粒收质量影响因素分析. 中国农业科学, 2017, 50(11):2044-2051.
doi: 10.3864/j.issn.0578-1752.2017.11.010
[28] Johnson D Q, Russell W A. Genetic variability and relationships of physical grain-quality traits in the BSSS population of maize. Crop Science, 1982, 22(4):805-809.
[29] 王克如, 李璐璐, 高尚, 等. 中国玉米机械粒收质量主要指标分析. 作物学报, 2021, 47(12):2440-2449.
doi: 10.3724/SP.J.1006.2021.03046
[30] Plett S. Corn kernel breakage as a function of grain moisture at harvest in a prairie environment. Canadian Journal of Plant Science, 1994, 74(3):543-544.
[31] Chowdhury M H, Buchele W F. The nature of corn kernel damage inflicted in the shelling crescent of grain combines. International Journal for Engineering Modelling, 1978, 21(4):610-614.
[32] 刘佳媛, 刘倩倩, 陈祥, 等. 不同玉米品种籽粒耐破碎性差异及影响因素. 中国农业大学学报, 2021, 26(12):207-220.
[33] 赵波, 李小龙, 周茂林, 等. 西南玉米机械粒收籽粒破碎率现状及影响因素分析. 作物学报, 2020, 46(1):74-83.
[34] 曲宏杰. 籽粒型玉米收获机适应性的试验与研究. 淄博: 山东理工大学, 2013.
[35] Vyn T J, Moes J. Breakage susceptibility of corn kernels in relation to crop management under long growing season conditions. Agronomy Journal, 1988, 80(6):915-920.
[36] 薛军, 李璐璐, 谢瑞芝, 等. 倒伏对玉米机械粒收田间损失和收获效率的影响. 作物学报, 2018, 44(12):1774-1781.
doi: 10.3724/SP.J.1006.2018.01774
[37] 薛军, 王群, 李璐璐, 等. 玉米生理成熟后倒伏变化及其影响因素. 作物学报, 2018, 44(12):1782-1792.
doi: 10.3724/SP.J.1006.2018.01782
[38] Hall G E, Johnson W H. Corn kernel crack age induced by mechanical shelling. Transactions of the ASAE, 1970, 13(1):51-55.
[39] 孔凡磊, 赵波, 吴雅薇, 等. 收获时期对四川春玉米机械粒收质量的影响. 中国生态农业学报, 2020, 28(1):50-56.
[1] Ma Yanhua, Sun Dequan, Li Suiyan, Lin Hong, Pan Liyan, Li Donglin, Fan Jinsheng, Wu Jianzhong, Yang Guowei. Comprehensive Evaluation of Main Agronomic Traits and Screening of Excellent Germplasms of Maize Landraces in Heilongjiang Province [J]. Crops, 2024, 40(4): 103-112.
[2] Wang Fugui, Zou Runhou, Gao Julin, Wang Zhen, Cheng Zhipeng, Hao Qi, Zhang Yuezhong, Wang Zhigang. Effects of Straw Returning Methods on Soil Water and Heat and Seedling Growth and Yield of Spring Maize in Eastern Region of Inner Mongolia [J]. Crops, 2024, 40(4): 223-231.
[3] Li Qingchao, Zhang Dengfeng, Li Chunhui, Yang Shan, Liu Jianxin, Wu Xun. Genetic Diversity Analysis and Comprehensive Evaluation of Maize Landraces in Southwest China [J]. Crops, 2024, 40(4): 24-32.
[4] Li Chunqing, Liu Xiangyu, Yan Peng, Zhou Liuqian, Lu Lin, Dong Zhiqiang, Xu Jiang. Physiological Identification and Comprehensive Evaluation of Drought Resistance of Different Maize Varieties [J]. Crops, 2024, 40(4): 253-262.
[5] Wang Lu, Deng Jie, Zhang Ze, Zhao Mengwei, Che Xinyang, Wang Guangyi, Guo Xu, Zhang Haiyang, He Lin, Weng Jianfeng, Xu Jingyu. Identification and Evaluation of Drought Tolerant Germplasm Resources at Seedling Stage of Maize under PEG Stress [J]. Crops, 2024, 40(4): 43-53.
[6] Liu Qianqian, Li Ran, Zhou Tingfang, Zhang Ze, Shangguan Xiaochuan, Pan Yue, Zhang Degui, Yong Hongjun, Li Mingshun, Han Jienan. Identification of Salt Tolerance of 211 Maize Inbred Lines at Germination Stage [J]. Crops, 2024, 40(4): 62-70.
[7] Guo Haibin, Zhang Jungang, Wang Wenwen, Xue Zhiwei, Xu Haitao, Feng Xiaoxi, Wang Bingong, Wang Chengye. Response of Photosynthetic Characteristics, Root Growth and Yield of Summer Maize to Subsoiling and Increasing Density in Lime Concretion Black Soil [J]. Crops, 2024, 40(3): 109-118.
[8] Zhang Lin, Wu Wenming, Zhou Dengfeng, Peng Chen, Wang Shiji. Responses of Growth and Yield of Fresh-Eating Maize “Caitiannuo 100” to Autumn Sowing Date under Facility Cultivation [J]. Crops, 2024, 40(3): 175-179.
[9] Xu Rongqiong, Zhang Yifei, Du Jiarui, Yin Xuewei, Yang Kejun, Sun Yishan, Li Zesong, Li Guibin, Lu Yuxin, Liu Haichen, Li Weiqing, Li Jiayu. Effects of Foliar Spraying Calcium Fertilizer on Lodging Resistance and Yield Formation of Spring Maize [J]. Crops, 2024, 40(3): 223-230.
[10] Li Jiaqi, Shi Jianguo, Chen Qihang, Chang Fengyun, Duan Yizhong, Chai Guaiqiang, Jia Lei, Chen Tao. Effects of Film Mulching on Rhizosphere Soil Microbial Community of Maize in Wind-Sand Grassy Beach Area of Northern Shaanxi Province [J]. Crops, 2024, 40(3): 238-246.
[11] Qing Chen, Liu Zhengxue, Li Yanjie. Effects of Compound Microbial Fertilizer on Drought Resistance of Maize Seedlings under Drought Stress by Transcriptome Analysis [J]. Crops, 2024, 40(3): 32-39.
[12] Ma Hongzhen, Xu Haitao, Wang Yue, Feng Xiaoxi, Xu Bo, Zhang Jungang, Guo Haibin, Wang Youhua. Analysis of Genetic Diversity and Genetic Distance of Maize Inbred Lines Based on Phenotypic Traits of Husks [J]. Crops, 2024, 40(3): 54-63.
[13] Wang Huaiping, Yang Mingda, Zhang Suyu, Li Shuai, Guan Xiaokang, Wang Tongchao. Effects of Different Water-Saving Irrigation Modes on Growth, Yield, and Water Utilization of Summer Maize [J]. Crops, 2024, 40(2): 206-212.
[14] Zhang Qian, Ren Wen, Zhao Bingbing, Zhou Miaoyi, Li Hanshuai, Liu Ya, Du Hewei. Cloning and Bioinformatics Analysis of ZmMAPKKK21 Gene in Maize [J]. Crops, 2024, 40(2): 30-39.
[15] Hu Haochi, Wang Fugui, Zhu Kongyan, Hu Shuping, Wang Meng, Wang Zhigang, Sun Jiying, Yu Xiaofang, Bao Haizhu, Gao Julin. Effects of Straw Returning Years and Phosphorus Application on Root Growth and Yield of Maize [J]. Crops, 2024, 40(2): 80-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!