Crops ›› 2024, Vol. 40 ›› Issue (5): 35-39.doi: 10.16035/j.issn.1001-7283.2024.05.005

Previous Articles     Next Articles

Genetic Model Analysis of Major Gene-Polygene of Seed Weight and Seed Shape in Flax (Linum usitatissimum L.)

Wang Bin1(), Zhao Li1(), Hou Jingjing1, Liu Jie2, Duan Yanqiao1   

  1. 1Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    2College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2023-09-07 Revised:2023-11-23 Online:2024-10-15 Published:2024-10-16

Abstract:

The seed characteristics of flax (Linum usitatissimum L.) are the important traits for superior variety selection. F1 and F2 generations crossed with CLX and BLX were used to research the inheritance of five seed characteristics in flax with major gene-polygene mixed inheritance analysis. The results showed: Five seed characteristics were controlled by major gene-polygene inheritance. The inheritance model of the 1000-grain weight was two pairs of additive major gene plus additive-dominance polygene, the heritability of the major gene and polygene were 84.59% and 14.73%, respectively. The inheritance model of seed surface area was controlled by two pairs of additive-dominant major gene plus additive-dominant polygene, seed length and seed width were two pair of additive-epistasis major gene plus additive-dominance polygene, the heritabilities of major genes of three traits were 45.69%, 37.09%, and 19.27%, respectively. The inheritance model of seed circumference was two pairs of equal dominant major genes plus additive-dominant polygene, the heritability of major genes was 68.24%. The heredity of seed shape traits is dominated by the major gene effect, and can be selected in early generation in progeny population through hybridization.

Key words: Flax, Seed characteristics, Inheritance model

Table 1

Statistic analysis of seed characteristics in F2 population"

性状
Trait
CLX BLX F1 F2
平均
Mean
最大值
Maximum
最小值
Minimum
极差
Range
标准差
SD
变异系数
CV (%)
千粒重1000-grain weight (g) 4.02 6.73 6.38 4.97 9.16 2.55 6.61 1.16 23.35
籽粒表面积Seed surface area (mm2) 7.49 12.61 10.23 8.38 13.53 5.27 8.26 1.71 17.49
籽粒周长Seed circumference (mm) 11.07 14.36 12.94 11.71 15.32 9.74 5.58 0.90 9.00
籽粒长度Seed length (mm) 4.31 5.48 5.05 4.56 6.04 3.47 2.57 0.13 8.82
籽粒宽度Seed width (mm) 2.22 3.03 2.62 2.36 3.04 2.03 1.01 0.04 9.49

Fig.1

Frequency distribution of different seed characteristics in F2 population"

Table 2

Max-likelihood-values and AIC values under various genetic models of five seed characteristics"

性状Trait 模型Model MLV AIC 性状Trait 模型Model MLV AIC
千粒重TSW MX2-A-AD 142.3117 -278.6240 籽粒长度SL MX2-ADI-AD -189.0350 396.0708
MX2-AED-AD 141.5901 -277.1800 MX2-AED-AD -196.2760 398.5518
MX2-EAED-AD 139.9968 -275.9940 MX2-ADI-ADI -189.0060 402.0120
籽粒表面积SSA MX2-AD-AD -873.0670 1756.1340 籽粒宽度SW MX2-ADI-AD 68.5969 -119.1940
MX2-ADI-AD -869.3400 1756.6790 MX1-AD-ADI 67.5054 -119.0110
MX1-AD-ADI -870.8290 1757.6570 MX2-AD-AD 63.0470 -116.0940
籽粒周长SC MX2-EEAD-AD -525.0660 1054.1320
MX2-AD-AD -522.6530 1055.3060
2MG-AED -522.9850 1055.9700

Table 3

Test for fitness of genetic models in five seed characteristics"

性状Trait 模型Model 世代Generation U12(p) U22(p) U32(p) nW2 Dn
千粒重
TSW
MX2-A-AD P1 0.0372 (0.8470) 5.1714 (0.0230) 96.8989 (0.0000) 3.4563 (<0.05) 0.3236 (<0.05)
P2 0.0369 (0.8477) 7.3543 (0.0067) 102.0818 (0.0000) 1.9510 (<0.05) 0.0079 (>0.05)
F1 0.0846 (0.7711) 1.6315 (0.2015) 38.8862 (0.0000) 0.8916 (<0.05) 0.1509 (<0.05)
F2 1.0071 (0.3156) 1.8957 (0.1686) 2.6264 (0.1051) 0.2361 (>0.05) 0.0045 (>0.05)
籽粒表面积
SSA
MX2-ADI-AD P1 0.0016 (0.9678) 2.4426 (0.1181) 41.0574 (0.0000) 1.2097 (<0.05) 0.0089 (>0.05)
P2 1.1833 (0.2767) 1.2466 (0.2642) 0.0641 (0.8002) 0.2785 (>0.05) 0.0053 (>0.05)
F1 1.4407 (0.2300) 0.4852 (0.4816) 3.4685 (0.0625) 0.3093 (>0.05) 0.0068 (>0.05)
F2 0.2428 (0.6222) 0.8487 (0.3569) 3.1565 (0.0756) 0.2198 (>0.05) 0.0069 (>0.05)
籽粒周长
SC
MX2-EEAD-AD P1 0.0114 (0.9149) 0.4908 (0.4836) 10.3433 (0.0013) 0.2815 (>0.05) 0.0094 (>0.05)
P2 1.3706 (0.2417) 1.5070 (0.2196) 0.1415 (0.7068) 0.3426 (>0.05) 0.0070 (>0.05)
F1 0.0856 (0.7698) 0.2480 (0.6185) 9.7660 (0.0018) 0.2768 (>0.05) 0.0095 (>0.05)
F2 0.1458 (0.7026) 0.5654 (0.4521) 2.3378 (0.1263) 0.1525 (>0.05) 0.0057 (>0.05)
籽粒长度
SL
MX2-ADI-AD P1 0.0141 (0.9053) 1.1614 (0.2812) 22.7658 (0.0000) 0.6134 (<0.05) 0.0053 (>0.05)
P2 0.1174 (0.7319) 0.2331 (0.6292) 10.6149 (0.0011) 0.3430 (>0.05) 0.0056 (>0.05)
F1 2.2998 (0.1294) 1.1994 (0.2734) 2.2281 (0.1355) 0.3878 (>0.05) 0.0225 (>0.05)
F2 0.0001 (0.9904) 0.1912 (0.6619) 2.8993 (0.0886) 0.1062 (>0.05) 0.0038 (>0.05)
籽粒宽度
SW
MX2-ADI-AD P1 0.0953 (0.7575) 0.2131 (0.6444) 9.2542 (0.0023) 0.2804 (>0.05) 0.0048 (>0.05)
P2 1.1128 (0.2915) 2.2303 (0.1353) 3.5651 (0.0590) 0.2877 (>0.05) 0.0055 (>0.05)
F1 1.2282 (0.2678) 0.2925 (0.5886) 4.5324 (0.0333) 0.2904 (>0.05) 0.0119 (>0.05)
F2 0.7840 (0.3759) 2.0813 (0.1491) 5.4824 (0.1920) 0.5380 (>0.05) 0.0183 (>0.05)

Table 4

Estimates of genetic parameters in five seed characteristics"

性状
Trait
一阶参数1nd order genetic parameter 二阶参数2nd order genetic parameter
m da db ha hb i jab jba l [d] [h] σmg2 σpg2 hmg2 (%) hpg2 (%)
千粒重TSW 5.39 1.61 1.06 -4.04 0.99 1.14 0.20 84.59 14.73
籽粒表面积SSA 8.04 0.00 0.00 -2.00 -1.99 2.00 0.01 0.00 2.33 -2.56 3.82 0.98 0.00 45.69 0.00
籽粒周长SC 12.71 -0.70 -0.24 -0.25 0.76 0.00 68.24 0.00
籽粒长度SL 4.41 0.00 0.00 -0.48 -0.48 0.48 0.00 0.00 0.52 -0.58 1.09 0.06 0.00 37.09 0.00
籽粒宽度SW 2.34 0.00 0.00 -0.28 -0.28 0.28 0.00 0.00 0.35 -0.40 0.47 0.01 0.00 19.27 0.00
[1] 王瑞霞, 张秀英, 伍玲, 等. 不同生态环境下冬小麦籽粒大小相关性状的QTL分析. 中国农业科学, 2009, 42(2):398-407.
[2] 赵利, 王斌, 苗红梅, 等. 胡麻种质资源籽粒表型与品质性状评价及其相关性研究. 植物遗传资源学报, 2020, 21(1):243-251.
[3] 刘栋, 马琴, 李爱荣, 等. 亚麻种质资源种子形态性状与含油量的分析与评价. 作物杂志, 2020(3):34-41.
[4] 吉春容, 李世清, 李生秀. 品种、种子大小和施肥对冬小麦生物学特性的影响. 生态学报, 2007, 27(6):2498-2506.
[5] 刘生祥, 宋晓华. 春小麦种子大小对主要性状及产量的影响. 种子, 2003(1):26-27.
[6] 陈冰嬬, 石英尧, 崔金腾, 等. 利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL. 作物学报, 2008, 34(8):1299-1307.
[7] 王利民, 党照, 赵玮, 等. 胡麻亚麻酸含量的遗传分析. 西北农业学报, 2020, 29(6):942-948.
[8] 王斌, 王利民, 张建平, 等. 胡麻RIL群体苗期抗旱性状的主基因+多基因遗传分析. 干旱地区农业研究, 2018, 36(5):14-20.
[9] 刘霞, 张冰冰, 马兵, 等. 甘蓝型油菜株高及其相关性状的主基因+多基因遗传分析. 西北农业学报, 2018, 27(4):528-536.
[10] 盖钧镒. 植物数量性状遗传体系的分离分析方法研究. 遗传, 2005, 27(1):130-136.
[11] 章元明. 植物数量遗传学的建立、发展与展望. 南京农业大学学报, 2012, 35(5):19-24.
[12] Wang G J, Wang Y, Ying J Z, et al. Identification of qLG2, qLG8, and qWG2 as novel quantitative trait loci for grain shape and the allelic analysis in cultivated rice. Planta, 2020, 252(2):18.
[13] Kang Y W, Zhang M, Zhang Y, et al. Genetic mapping of grain shape associated QTL utilizing recombinant inbred sister lines in high yielding rice (Oryza sativa L.). Agronomy, 2021, 11(4):705.
[14] 袁谦, 赵永涛, 张中州, 等. 小麦籽粒性状的遗传效应分析及其育种策略. 麦类作物学报, 2023, 43(4):434-441.
[15] 丁丹. 水稻5个粒型相关基因的分子标记开发与效应分析. 南京:南京农业大学, 2014.
[16] 张中伟, 杨海龙, 付俊, 等. 玉米粒长性状主基因+多基因遗传分析. 作物杂志, 2019(5):37-40.
[1] Wang Wenxia, Chang Bokai, Xia Qing, Zhi Hui, Du Jie. Effects of Foliar Spraying Selenium on Physiological Characteristics, Yield and Quality of Flax [J]. Crops, 2024, 40(4): 130-137.
[2] Xie Huifang, Wei Menghan, Song Zhongqiang, Liu Jinrong, Wang Suying, Xing Lu, Wang Shujun, Liu Haiping, Jia Xiaoping, Song Hui. Analyzing of the Mixed Inheritance Model of Major Gene Plus Polygene of Main Traits in Foxtail Millet [J]. Crops, 2024, 40(4): 82-89.
[3] Qu Zhihua, Zhang Lili, Hu Yang, Qiao Haiming, Li Feng, Bai Wei. Agronomic Characteristics Evaluation on Introduced Flax Germplasm Resources [J]. Crops, 2023, 39(6): 47-53.
[4] Ye Chunlei, Wang Wei, Chen Jun, Chen Chen, Luo Junjie, Wang Yi, Zhang Jianping. Preliminary Identification of Candidate Genes with Resistance to Powdery Mildew in Oil Flax Based on BSA-Seq [J]. Crops, 2023, 39(6): 69-78.
[5] Hou Jingjing, Jin Fang, Zhao Li, Wang Bin. Comprehensive Evaluation of Agronomic and Quality Traits of 16 New Oil Flax Lines [J]. Crops, 2022, 38(5): 42-48.
[6] Gao Fengyun, Siqin Bateer, Zhou Yu, Jia Xiaoyun, Su Shaofeng, Zhao Xiaoqing, Jin Xiaolei. Association Analysis of Crude Fat and Fatty Acid Components in Flax Based on SSR Markers [J]. Crops, 2022, 38(1): 44-49.
[7] Qian Aiping, Cao Xiuxia, Zhang Wei, Yan Kuanjiang, Lu Junwu. Effects of Different Slow-Release Fertilizer Mix Proportions on the Growth and Yield of Dryland Flax [J]. Crops, 2020, 36(6): 128-131.
[8] Liu Dong, Ma Qin, Li Airong, Guo Na, Ma Jianfu, Qiao Haiming, Miao Hongmei. Analysis and Evaluation of Seed Morpholgical Characteristics and Oil Content of Flax Germplasms [J]. Crops, 2020, 36(3): 34-41.
[9] Qu Zhihua,Bai Wei,Zhang Lili,Li Feng,Hu Yang,Qiao Haiming. Main Agronomic Characteristics Analysis on 170 Flax Germplasm Resources [J]. Crops, 2019, 35(4): 77-83.
[10] Feng Xuejin,Guo Xiujuan,Yang Jianchun,Wang Liqin. Effects of Spraying Selenium Fertilizer on Selenium Content, Yield and Quality of Flax Seed [J]. Crops, 2019, 35(3): 155-157.
[11] Rula Sa,Xiaoling Song,Xiaoqing Zhao,Songli Shi,Yingchun Bai,Yanfang Wang,Xirui Zhang. Evaluation of the Content of Flax Lignan and Genetic Diversity [J]. Crops, 2019, 35(1): 56-62.
[12] Si Chen,Xue Yang,Xiukun Yang,Hongmei Yuan,Wengong Huang,Yan Liu,Yubo Yao,Guangwen Wu. Screening Pasmo-Resistant Germplasm Resources from Flax Varieties (Lines) [J]. Crops, 2019, 35(1): 63-67.
[13] Yi Liuxi,Siqin Bateer,Gao Fengyun,Zhou Yu,Jia Xiaoyun,Chen Mingzhe,Zhang Hui,Jia Haibin. Genetic Diversity of Flax Germplasm Resources in Inner Mongolia [J]. Crops, 2018, 34(6): 53-57.
[14] Wu Ruixiang,Yang Jianchun,Wang Liqin,Guo Xiujuan. Evaluation of the Adaptability of Flax Drought Resistance Based on Multiple Statistics Analysis [J]. Crops, 2018, 34(5): 10-16.
[15] Xiujuan Guo,Xuejin Feng,Jianchun Yang,Ruixiang Wu,Liqin Wang. Effects of Interaction between Fertilizer and Density on the Yield and Economic Traits of Flax [J]. Crops, 2017, 33(2): 135-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!