Crops ›› 2019, Vol. 35 ›› Issue (1): 56-62.doi: 10.16035/j.issn.1001-7283.2019.01.009

;

Previous Articles     Next Articles

Evaluation of the Content of Flax Lignan and Genetic Diversity

Rula Sa1,Xiaoling Song1,Xiaoqing Zhao2,Songli Shi1,Yingchun Bai1,Yanfang Wang1,Xirui Zhang1   

  1. 1 School of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014060, Inner Mongolia, China
    2 Centre for Biotechnology Research, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, Inner Mongolia, China;
  • Received:2018-06-05 Revised:2018-11-13 Online:2019-02-15 Published:2019-02-01

Abstract:

The lignan content of 50 flax germplasms was determined by high performance liquid chromatography and subjected to genetic diversity analysis based on SRAP markers. The purpose of our study was to further understand the lignan content variation and genetic diversity of flax germplasm and provide a scientific basis for the breeding of high lignan content and the subsequent improvement of flax lignan quality. The results showed that the lignan content of the tested materials ranged from 2.819 to 13.001μg/g, with an average of 7.581μg/g, and the highest lignan content was J-309 from Canada. 11 pairs of SRAP primers were amplified. There were 135 bands, the polymorphic band was 73, the polymorphism ratio was 54.07%, and the primer polymorphism information (PIC) averaged 0.74. The effective allele number (Ne), the shannon′s information index (I), and the Nei's genetic similarity coefficient (H) were 1.6010, 0.7341, and 0.4925, respectively. The results of cluster analysis of lignan content and genotype data show that the two clusters are divided into three categories. Most of the same species in the two different clusters are identical. It is concluded that the difference in lignan content and genetic diversity between flax germplasms are significantly affected by the region.

Key words: Flax, Lignan, Genetic diversity, SRAP

Table 1

Flax germplasm origin and name"

编号Code 名称Name 来源Origin 编号Code 名称Name 来源Origin
1 n-4 中国内蒙古Inner Mongolia,China 26 CFRESBR106 荷兰Netherlands
2 n-11 27 CFRESBR91
3 n-33 28 CFRESBR105
4 n-38 29 CFRESBR107
5 n-273 30 CFRESBR94
6 g-12 中国甘肃Gansu,China 31 A-14 美国America
7 g-19 32 A-32
8 g-24 33 A-178
9 g-30 34 A-177
10 g-31 35 A-176
11 h-1 中国河北Hebei,China 36 J-53 加拿大Canada
12 h-16 37 J-309
13 h-21 38 AC HANLEY
14 h-28 39 AC MCDUFF
15 h-47 40 CDC ARRAS
16 s-13 中国山西Shanxi,China 41 E-114 俄罗斯Russia
17 s-17 42 E-261
18 s-23 43 ROSSIANINTRD
19 s-29 44 RussIA
20 s-122 45 CI2824
21 H-218 匈牙利Hungary 46 B-18 巴基斯坦Pakistan
22 H-213 47 B-20
23 Hungary 141 48 PAKISTAN177
24 Hungary 147 49 PAKISTAN172
25 Hungary 150 50 PAKISTAN166

Table 2

Forward and reverse primer sequences in SRAP-PCR"

正向引物序列(5′→3′)Forward primer sequence (5′→3′) 反向引物序列(5′→3′)Reverse primer sequence (5′→3′)
M1:5′-TGAGTCCAAACCGG CAT-3′ E1:5′-GACTGCGTACGAATTAAT-3′
M2:5′-TGAGTCCAAACCGG AAA-3′ E2:5′-GACTGCGTACGAATT CCT-3′
M3:5′-TGAGTCCAAACCGG TAG-3′ E3:5′-GACTGCGTACGAATTGAC-3′
M4:5′-TGAGTCCAAACCGG AGA-3′ E4:5′-GACTGCGTACGAATTTGA-3′
M5:5′-TGAGTCCAAACCGGAAG-3′ E5:5′-GACTGCGTACGAATT AGC-3′
M6:5′-TGAGTCCAAACCGGATG-3′ E6:5′-GACTGCGTACGAATT GTC-3′
M7:5′-TGAGTCCAAACCGG TCT-3′ E7:5′-GACTGCGTACGA ATT CGA-3′
M8:5′-TGAGTCCAAACCGGTGA-3′ E8:5′-GACTGCGTACGAATTACT-3′
M9:5′-TGAGTCCAAACCGG ACA-3′ E9:5′-GACTGCGTA CGAATT CAA-3′
M10:5′-TGAGTCCAAACCGG ACG-3′ E10:5′-GACTGCGTACGAATT CAC-3′
M11:5′-TGAGTCCAAACCGG TCC-3′ E11:5′-GACTGCGTACGAATT TAG-3′
M12:5′-TGAGTCCAAACCGG TGC-3′ E12:5′-GACTGCGTACGAATT GGT-3′
M13:5′-TGAGTCCAAACCGG AAC-3′ E13:5′-GACTGCGTACGAATT ATG-3′

Fig.1

Standard phenolics of lignin"

Fig.2

Determination of sample chromatograms"

Table 3

Lignin content of flax germplasm"

名称Name 木酚素含量Content of lignin (μg/g) 花色Flower colour 名称Name 木酚素含量Content of lignin (μg/g) 花色Flower colour
n-4 6.940 蓝色 CFRESBR106 3.914 蓝色
n-11 4.168 蓝色 CFRESBR91 10.164 深蓝色
n-33 8.173 淡蓝色 CFRESBR105 10.440 深蓝色
n-38 6.860 蓝色 CFRESBR107 6.152 深蓝色
n-273 10.455 蓝色 CFRESBR94 8.559 深蓝色
g-12 6.542 蓝色 A-14 11.930 蓝色
g-19 6.227 白色 A-32 10.062 白色
g-24 8.406 蓝色 A-178 10.046 蓝色
g-30 5.619 蓝色 A-177 5.849 蓝色
g-31 8.135 蓝色 A-176 8.205 蓝色
h-1 7.136 蓝色 J-53 6.127 蓝色
h-16 6.081 蓝色 J-309 13.001 蓝色
h-21 5.633 蓝色 AC HANLEY 7.186 深蓝色
h-28 2.819 白色 AC MCDUFF 6.513 深蓝色
h-47 4.373 蓝色 CDC ARRAS 6.717 深蓝色
s-13 6.082 蓝色 E-114 11.199 粉蓝色
s-17 9.851 蓝色 E-261 11.130 蓝色
s-23 6.930 蓝色 ROSSIANINTRD 5.470 蓝色
s-29 7.417 蓝色 RussIA 6.532 深蓝色
s-122 8.070 蓝色 CI2824 7.668 白色
H-218 11.392 淡蓝色 B-18 7.047 深蓝色
H-213 11.017 白色 B-20 5.245 深蓝色
Hungary 141 5.648 淡蓝色 PAKISTAN177 10.925 蓝色
Hungary 147 6.593 蓝色 PAKISTAN172 11.340 深蓝色
Hungary 150 7.367 蓝色 PAKISTAN166 6.203 粉蓝色

Table 4

Amplification of flax with the screening of 11 pairs of SRAP primer"

引物名称
Primer name
引物序列(5′→3′)
Primer sequence
总位点数
Number of
total loci
多态性位点数
Number of
polymorphic loci
多态性位点百分率(%)
Percentage of
polymorphic loci
有效等位基因数
Number of
effective alleles
PIC
M9E1
M9:5′-TGAGTCCAAACCGG ACA-3′
E1:5′-GACTGCGTACGAATTAAT-3′
12
7
58.33
1.48
0.73
M2E6 M2:5′-TGAGTCCAAACCGG AAA-3′
E6:5′-GACTGCGTACGAATT GTC-3′
9 5 55.56 1.72 0.67
M10E7 M10:5′-TGAGTCCAAACCGG ACG-3′
E7:5′-GACTGCGTACGA ATT CGA-3′
15 7 46.67 1.52 0.68
M8E6 M8:5′-TGAGTCCAAACCGGTGA-3′
E6:5′-GACTGCGTACGAATT GTC-3′
11 5 45.45 1.72 0.78
M4E3 M4:5′-TGAGTCCAAACCGG AGA-3′
E3:5′-GACTGCGTACGAATTGAC-3′
13 8 61.53 1.77 0.74
M4E1 M4:5′-TGAGTCCAAACCGG AGA-3′
E1:5′-GACTGCGTACGAATTAAT-3′
13 6 46.15 1.80 0.66
M9E8 M9:5′-TGAGTCCAAACCGG ACA-3′
E8:5′-GACTGCGTACGAATTACT-3′
15 9 60.00 1.92 0.76
M6E10 M6:5′-TGAGTCCAAACCGGATG-3′
E10:5′-GACTGCGTACGAATT CAC-3′
11 6 54.54 1.78 0.71
M13E9 M13:5′-TGAGTCCAAACCGG AAC-3′
E9:5′-GACTGCGTA CGAATT CAA-3′
12 6 50.00 1.88 0.79
M5E7 M5:5′-TGAGTCCAAACCGGAAG-3′
E7:5′-GACTGCGTACGAATTGTA-3′
14 8 57.14 1.60 0.82
M4E4 M4:5′-TGAGTCCAAACCGGACC-3v
E4:5′-GACTGCGTACGAATTTGA-3′
10 6 60.00 1.74 0.80
平均值Average 12.27 6.64 54.12 1.72 0.74
总计Total 135 73 54.07 18.93 8.14

Fig.3

Clustering of 50 flax germplasms with SRAP markers A, First group; B, Second group; C, Third group; 1-50 are the same materials as table 2"

Fig.4

Clustering of 50 flax germplasms with lignan content A, First group; B, Second group; C, Third group; 1-50 are the same materials as table 2"

[1] 伊六喜, 斯钦巴特尔,贾霄云 ,等. 胡麻种质资源、育种及遗传研究进展. 中国麻业科学, 2017,39(2):81-87.
doi: 10.3969/j.issn.1671-3532.2017.02.006
[2] 许光映, 胡晓军, 李群 , 等. 亚麻木酚素检测精密度的影响因素分析及改进措施. 山西农业科学, 2016,44(7):938-940,950.
doi: 10.3969/j.issn.1002-2481.2016.07.11
[3] 冯小慧, 李国银, 宋洁 , 等. 高效液相色谱法测定亚麻籽中木酚素的含量. 畜牧与饲料科学, 2017,37(12):17-18.
doi: 10.3969/j.issn.1672-5190.2016.12.006
[4] 臧茜茜, 魏晓珊, 陈鹏 , 等. 不同品种亚麻籽木酚素多聚体水解物的组成及含量. 中国油料作物学报, 2017,39(2):253-259.
doi: 10.7505/j.issn.1007-9084.2017.02.017
[5] 郑书国, 杨慧, 王宏婷 , 等. 亚麻木酚素抑制C57BL/6小鼠Lewis肺癌生长及肺转移. 中国临床药理学与治疗学, 2015,20(7):745-750.
[6] 刘珊, 李昕, 张保平 , 等. 亚麻籽木酚素预防乳腺癌的作用及机制研究. 现代生物医学进展, 2015,15(34):6645-6648.
doi: 10.13241/j.cnki.pmb.2015.34.011
[7] Demark-Wahnefried W, Ye X, Yu Z , et al. Effects of a flaxseed-derived lignan supplement on C-reactive protein,IL-6 and retinol-binding protein 4 in type 2 diabeticpatients. British Journal of Nutrition, 2009,101(8):1145-1149.
doi: 10.1017/S0007114508061527 pmid: 18775100
[8] 李兴勇, 魏晓辉, 李喜香 . 亚麻木酚素对复合因素诱导大鼠骨质疏松症的治疗作用研究. 实用中医药杂志, 2016,32(10):948-951.
doi: 10.3969/j.issn.1004-2814.2016.10.001
[9] 胡晓军, 郭忠贤, 赵毅 . 亚麻籽综合利用及开发前景浅析. 中国麻业, 2017(5):40-41.
doi: 10.3969/j.issn.1671-3532.2002.05.011
[10] Stewart C J, Via L E . A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques, 1993,14:748-749.
pmid: 8512694
[11] Li G, Quiros C F . Sequence-related amplified polymorphism (SRAP),a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theoretical & Applied Genetics, 2001,103(2/3):455-461.
doi: 10.1007/s001220100570
[12] Gresshoff P M . Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 1991,196(1):80-83.
doi: 10.1016/0003-2697(91)90120-I
[13] 张安世, 徐九文, 张利民 , 等. 北方部分粳稻品种遗传关系的SRAP分析. 作物杂志, 2017(6):55-58.
doi: 10.3969/j.issn.1001-7283.2009.06.014
[14] 石玲艳, 侯建华, 张永虎 , 等. 基于SRAP标记的玉米自交系遗传多样性与群体结构分析. 作物杂志, 2017(3):57-63.
doi: 10.16035/j.issn.1001-7283.2015.03.011
[15] 李锐, 白建荣, 王秀红 , 等. 144份甜玉米群体的遗传多样性分析. 作物杂志, 2017(2):17-24.
doi: 10.16035/j.issn.1001-7283.2018.02.004
[16] 张帅, 庞玉辉, 王征宏 , 等. 小麦种质资源农艺性状变异及其遗传多样性分析. 作物杂志, 2017(2):44-51.
[17] Botstein D, White R L, Skolnick M , et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980,32(3):314-331.
doi: 10.1016/0165-1161(81)90274-0 pmid: 6247908
[18] 李明, 姜硕, 郑东泽 , 等. 亚麻SRAP标记连锁图谱的构建及3个数量性状的定位. 东北农业大学学报, 2014,45(2):12-18.
doi: 10.3969/j.issn.1005-9369.2014.02.003
[19] 安泽山, 严兴初, 党占海 , 等. 利用SRAP标记分析胡麻资源遗传多样性. 西南农业学报, 2014,27(2):530-534.
doi: 10.3969/j.issn.1001-4829.2014.02.013
[20] 伊六喜, 斯钦巴特尔,张辉 ,等. 胡麻核心种质资源表型变异及SRAP分析. 中国油料作物学报, 2017,39(6):794-804.
doi: 10.7505/j.issn.1007-9084.2017.05.010
[21] 郝荣楷, 严兴初, 党占海 , 等. 我国胡麻育成品种的遗传多样性分析. 中国油料作物学报, 2014,36(3):334-342.
doi: 10.7505/j.issn.1007-9084.2014.03.007
[22] 吴建忠, 赵东升, 黄文功 , 等. 12个亚麻品种亲缘关系的SRAP分析. 中国麻业科学, 2012,34(4):153-156.
doi: 10.3969/j.issn.1671-3532.2012.04.001
[1] Chunyu Lin,Xiaoyu Liang,Huiyan Zhao,Yang Wang. Analysis of Genetic Diversity and Population Structure of Main Soybean Varieties in Heilongjiang Province [J]. Crops, 2019, 35(2): 78-83.
[2] Fang Chen,Shixiao Xu,Xiaohui Li,Chao Liu,Jianfei Zhou,Yuan Wang,Pei Tian,Tiezhao Yang. Construction of Molecular Fingerprinting and Analysis of Genetic Diversity for 80 Tobacco (Nicotiana tabacum) Germplasms Based on SSR Markers [J]. Crops, 2019, 35(1): 22-31.
[3] Si Chen,Xue Yang,Xiukun Yang,Hongmei Yuan,Wengong Huang,Yan Liu,Yubo Yao,Guangwen Wu. Screening Pasmo-Resistant Germplasm Resources from Flax Varieties (Lines) [J]. Crops, 2019, 35(1): 63-67.
[4] Yi Liuxi,Siqin Bateer,Gao Fengyun,Zhou Yu,Jia Xiaoyun,Chen Mingzhe,Zhang Hui,Jia Haibin. Genetic Diversity of Flax Germplasm Resources in Inner Mongolia [J]. Crops, 2018, 34(6): 53-57.
[5] Wu Ruixiang,Yang Jianchun,Wang Liqin,Guo Xiujuan. Evaluation of the Adaptability of Flax Drought Resistance Based on Multiple Statistics Analysis [J]. Crops, 2018, 34(5): 10-16.
[6] Ma Mengli,Zheng Yun,Zhou Xiaomei,Zhang Tingting,Zhang Xiaoqian,Lu Bingyue. Genetic Diversity Analysis of Red Rice from Hani’s Terraced Fields in Yunnan Province [J]. Crops, 2018, 34(5): 21-26.
[7] Huiyao Tian,Jizhi Jiang,Chengbin Li,Fen Shen,Ning Hou. Genetic Diversity of Phytophthora infestans in Northeast China [J]. Crops, 2018, 34(3): 168-173.
[8] Shuai Zhang,Yuhui Pang,Zhenghong Wang,Liming Wang,Chunyan Chen,Zhankui Zeng,Chunping Wang. Variation of Agronomic Traits and Genetic Diversity in Wheat Germplasms [J]. Crops, 2018, 34(2): 44-51.
[9] Rui Li,Jianrong Bai,Xiuhong Wang,Congzhuo Zhang,Xiaomei Zhang,Lei Yan,Ruijuan Yang. Population Genetic Diversity of 144 Sweet Maizes [J]. Crops, 2018, 34(2): 17-24.
[10] Lu Zhao,Zhiwei Yang,Liqun Bu,Ling Tian,Mei Su,Lei Tian,Yinxia Zhang,Shuqin Yang,Peifu Li. Analysis and Comprehensive Evalution of Phenotypic Genetic Diversity of Ningxia and Xinjiang Rice Germplasm [J]. Crops, 2018, 34(1): 25-34.
[11] Pengyan Guo,Caiping Wang,Jiecheng Ren,Jiping Zhao,Ying Xu,Maolin Yue. Genetic Diversity of Agronomic Traits of Mung Beans from Different Geographical Sources [J]. Crops, 2017, 33(6): 55-59.
[12] Lianmei Tai,Yuhu Zuo,Yaling Zhang,Yongling Jin,Yongxia Guo,Xuehui Jin,Guanghui Jin. Analysis of Genetic Diversity of Alternaria solani Isolated from Potato in Heilongjiang Province [J]. Crops, 2017, 33(3): 151-156.
[13] Xiujuan Guo,Xuejin Feng,Jianchun Yang,Ruixiang Wu,Liqin Wang. Effects of Interaction between Fertilizer and Density on the Yield and Economic Traits of Flax [J]. Crops, 2017, 33(2): 135-138.
[14] Chaowu Zeng,Xiaodong Liang,Jianjiang Li. Genetic Diversity Analysis on Main Characters of Spring Wheat Germplasms in Central Asia [J]. Crops, 2017, 33(2): 67-71.
[15] Hongxiao Ren,Cuimian Jiang,Yunqing Gao,Qibing Shang,Dongxu Xu,Fang Wang,Xuzhen Cheng. Genetic Diversity and Phenotypic Trait of Chinese Tradional Famous Mungbean [J]. Crops, 2017, 33(1): 44-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .