Crops ›› 2024, Vol. 40 ›› Issue (5): 8-17.doi: 10.16035/j.issn.1001-7283.2024.05.002

;

Previous Articles     Next Articles

KASP Detection and Analysis of Functional Genes of Important Traits in Four National-Approved Luomai Varieties

Cao Yanyan1(), Li Leilei1, Ge Changbin1(), Huang Jie1, Zhou Luqi2, Wang Jun1, Yang Senyao1, Liao Ping’an1()   

  1. 1Luohe Academy of Agricultural Sciences, Luohe 462300, Henan, China
    2Henan Dacheng Seed Industry Co., Ltd., Zhengzhou 450000, Henan, China
  • Received:2024-03-20 Revised:2024-07-22 Online:2024-10-15 Published:2024-10-16

Abstract:

Four national-approved wheat varieties (Luomai 163, Luomai 47, Luomai 49, and Luomai 36) were examined for the presence of key functional genes, such as photoperiod, grain weight, quality, spike sprouting, drought and disease resistance by using KASP marker detection. The results showed that, the four wheat varieties contained dwarfing gene Rht-D1b, allelic variants TaPRR73-A1 and TaPRR73-B1 related to plant height at maturity, photoperiod sensitive allele Ppd-A1b, photoperiod insensitive allele Ppd-Dla, high 1000-grain weight allele TaGS5-Ala, high grain number excellent variant Hap-7A-3, high quality subunit gene Ax1/Ax2* related to quality, high lipoxygenase activity allele Lox-B1a, anti-sprouting gene Rio Blanco type and TaSdr-B1a, and high lignin content excellent allele COMT-3Ba, all accounting for 100%. The utilization of hard genotype Pinb-D1b, high molecular weight glutenin subunit (5+10), stripe rust resistance gene Yr78 and leaf rust resistance gene Lr16 were higher in the four cultivars. High 1000-grain weight allele Hap-A, good allele variant of grain number per spike TaMoc-7A, grain hardness gene Pina-D1b/Null, Pinb-B2b, drought resistance gene 1-fehw3, powdery mildew resistance gene Pm21, and leaf rust resistance gene Lr46 and Lr48 were not detected. The findings of four significant characteristic functional genes of wheat varieties offered crucial reference information for the practical use of upcoming varieties.

Key words: Wheat, Functional gene, KASP detection, Analysis

Table 1

Names, year of release and pedigree of wheat cultivars tested"

品种Cultivar 育成年份Year of release 系谱Pedigree
漯麦163 Luomai 163 2018鄂审/2020国审 漯麦6010/弗罗里达
漯麦36 Luomai 36 2022国审 郑麦7698/漯麦6010
漯麦49 Luomai 49 2022国审 漯麦6010/郑麦9023
漯麦47 Luomai 47 2021鄂审/2023国审 漯麦6010/一粒葡

Table 2

Details of related genes and markers"

类型
Type
性状
Characteristic
遗传效应
Genetic effect
基因
Gene
标记
Marker
等位变异
Allelic variation
表型
Phenotype
适应性相关性状
Adaptive-related trait
株高 主效 Rht-B1 Rht-B1_SNP Rht-B1a 野生型
Rht-B1b 矮秆型
株高 主效 Rht-D1 Rht-D1_SNP Rht-D1a 野生型
Rht-D1b 矮秆型
株高 主效 Rht8 Rht8 Rht8+ 含矮秆基因
Rht8- 不含矮秆基因
株高、熟期 微效 TaPRR73-A1 PRR73A1-9IND Hap-I 晚熟,矮
Hap-II 早熟,高
株高、熟期 微效 TaPRR73-B1 PRR73B1-4558 Hap-I 早熟,高
Hap-II 晚熟,矮
光周期 主效 Ppd-A1 GS105-1117_InDel Ppd-A1a 光周期迟钝
Ppd-A1b 光周期敏感
光周期 主效 Ppd-B1 TaPpdBJ001 Ppd-B1a 光周期迟钝
Ppd-B1b 光周期敏感
光周期 主效 Ppd-D1 TaPpdDJ001 Ppd-D1a 光周期迟钝
Ppd-D1b 光周期敏感
主效 AWN Absence AWN+ 有芒
Presence AWN- 无芒
产量相关性状
Yield-related trait
千粒重 微效 Sus1-7A Sus1-7A-1185_SNP Hap-I 低千粒重
Hap-II 高千粒重
千粒重 微效 TaGASR7-A1 TaGASR H1C 高千粒重
H1G 低千粒重
千粒重 微效 TaSus2-2A Sus2-2A-20SNP Hap-A 高千粒重
Hap-G 低千粒重
粒重 微效 TaGS5 GS5_SNP TaGS5-Ala 大粒,粒重高
TaGS5-Alb 小粒,粒重低
穗粒数 微效 TEF-7A TEF7A-1-bp_IND Hap-7A-3 粒数较多
Hap-7A-1/2 粒数较少
穗粒数 微效 TaMoc-7A TaMoc-7A_2433 Hap-H 粒数较多
Hap-L 粒数较少
品质相关性状
Quality-related trait
籽粒硬度 主效 Pina-D1 Pina-D1 Pina-D1a 软质
Pina-D1b/Null 硬质
籽粒硬度 主效 Pinb-D1 Pinb-D1 Pinb-D1a 软质
Pinb-D1b 硬质
籽粒硬度 微效 Pinb2-V Pinb2-Bv2 Pinb-B2a 软质
Pinb-B2b 硬质
面筋强度 主效 Glu-D1 Glu-D1_SNP 2+12 弱筋
5+10 强筋
面筋强度 主效 Glu-A1 Glu-A1-13 AxNull 弱筋
Ax1/Ax2* 强筋
籽粒蛋白质含量 微效 Gpc GPC_DUC Gpc-B1- 含量正常
Gpc-B1+ 含量增加
籽粒蛋白质含量 微效 NAM-6A NAM-6A_SNP1 T/A1c/A1d 含量正常
G/A1a/A1b 含量增加
黄色素含量 主效 Psy-D1 Psy1Da-g Psy-D1a 含量低
Psy-D1g 含量高
黄色素含量 微效 Zds-A1 ZDS-A1_SNP Zds-A1a 含量高
Zds-A1b 含量低
黄色素含量 微效 TaPds-B1 PDS-B1_SNP TaPds-B1a 含量高
TaPds-B1b 含量低
过氧化物酶表达量 微效 Pod-A1 Pod-A1 TaPod-A1a 酶含量低
TaPod-A1b 酶含量高
脂肪氧化酶表达量 主效 Lox-B1 Lox-B1 Lox-B1b 酶含量低
Lox-B1a 酶含量高
可溶性糖含量 微效 SST-4D SST-4D-1093 TaSST-D1a 糖含量高
TaSST-D1b 糖含量低
抗逆相关性状
Resistance-related trait
抗旱 主效 TaDreb-B1 TaDreb_SNP TaDreb-B1a 抗旱
TaDreb-B1b 不抗旱
抗旱 主效 1-fehw3 1-FEH-6B Kauz type 不抗旱
Westonia type 抗旱
穗发芽 主效 TaPHS1 PHS1-646 NW97S186 type 感穗发芽
Rio Blanco type 抗穗发芽
穗发芽 微效 Sdr-B1 Sdr-B1 TaSdr-B1b 感穗发芽
TaSdr-B1a 抗穗发芽
木质素含量 微效 COMT-3B COMT3B_882_SNP COMT-3Ba 木质素含量高
COMT-3Bb 木质素含量低
抗白粉病 主效 Pm21 Pm21_SNP Pm21- 感病
Pm21+ 抗病
抗赤霉病 主效 Fhb1 Fhb1_KSU Fhb1- 感病
Fhb1+ 抗病
抗条锈病 微效 Yr78 IWA7257 Yr78- 感病
Yr78+ 抗病
抗叶锈病 微效 Lr46 Lr46_JF2-2A Lr46- 感病
Lr46+ 抗病
抗叶锈病 微效 Lr16 kwm847 Lr16- 感病
Lr16+ 抗病
抗叶锈病 微效 Lr16 kwm849 Lr16- 感病
Lr16+ 抗病
抗叶锈病 微效 Lr48 IWB70147 Lr48- 感病
Lr48+ 抗病

Fig.1

Cluster diagram of varieties by KASP analysis of some functional markers a, b, c are genotyping maps of different KASP markers; The blue, red, green, and pink dots represent FAM, HEX, heterozygous, and unknown allele, respectively."

Table 3

KASP test results of adaptability related genes"

基因
Gene
等位变异
Allelic variation
表型
Phenotype
漯麦163
Luomai 163
漯麦47
Luomai 47
漯麦49
Luomai 49
漯麦36
Luomai 36
Rht-B1 Rht-B1a 野生型 Rht-B1a Rht-B1a Rht-B1a Rht-B1a
Rht-B1b 矮秆型
Rht-D1 Rht-D1a 野生型 Rht-D1b Rht-D1b Rht-D1b Rht-D1b
Rht-D1b 矮秆型
Rht8 Rht8+ 含矮秆基因 Rht8- Rht8- Rht8- Rht8+
Rht8- 不含矮秆基因
TaPRR73-A1 Hap-I 晚熟,矮 Hap-II Hap-II Hap-II Hap-II
Hap-II 早熟,高
TaPRR73-B1 Hap-I 早熟,高 Hap-II Hap-II Hap-II Hap-II
Hap-II 晚熟,矮
Ppd-A1 Ppd-A1a 光周期迟钝 Ppd-A1b Ppd-A1b Ppd-A1b Ppd-A1b
Ppd-A1b 光周期敏感
Ppd-B1 Ppd-B1a 光周期迟钝 Ppd-B1a Ppd-B1b Ppd-B1b Ppd-B1b
Ppd-B1b 光周期敏感
Ppd-D1 Ppd-D1a 光周期迟钝 Ppd-D1a Ppd-D1a Ppd-D1a Ppd-D1a
Ppd-D1b 光周期敏感
AWN AWN+ 有芒 AWN+ AWN+ AWN+ AWN+
AWN- 无芒

Table 4

KASP test results of grain weight related genes"

基因
Gene
等位变异
Allelic variation
表型
Phenotype
漯麦163
Luomai 163
漯麦47
Luomai 47
漯麦49
Luomai 49
漯麦36
Luomai 36
Sus1-7A Hap-I 低千粒重 Hap-I Hap-I Hap-I Hap-II
Hap-II 高千粒重
TaGASR7-A1 H1C 高千粒重 H1G H1G H1G H1C
H1G 低千粒重
TaSus2-2A Hap-A 高千粒重 Hap-G Hap-G Hap-G Hap-G
Hap-G 低千粒重
TaGS5 TaGS5-Ala 大粒,粒重高 TaGS5-Ala TaGS5-Ala TaGS5-Ala TaGS5-Ala
TaGS5-Alb 小粒,粒重低
TEF-7A Hap-7A-3 粒数较多 Hap-7A-3 Hap-7A-3 Hap-7A-3 Hap-7A-3
Hap-7A-1/2 粒数较少
TaMoc-7A Hap-H 粒数较多 Hap-L Hap-L Hap-L Hap-L
Hap-L 粒数较少

Table 5

KASP test results of quality related genes"

基因
Gene
等位变异
Allelic variation
表型
Phenotype
漯麦163
Luomai 163
漯麦47
Luomai 47
漯麦49
Luomai 49
漯麦36
Luomai 36
Pina-D1 Pina-D1a 软质 Pina-D1a Pina-D1a Pina-D1a Pina-D1a
Pina-D1b/Null 硬质
Pinb-D1 Pinb-D1a 软质 Pinb-D1b Pinb-D1b Pinb-D1b Pinb-D1a
Pinb-D1b 硬质
Pinb2-V Pinb-B2a 软质 Pinb-B2a Pinb-B2a Pinb-B2a Pinb-B2a
Pinb-B2b 硬质
Glu-D1 2+12 弱筋 5+10 2+12 2+12 5+10
5+10 强筋
Glu-A1 AxNull 弱筋 Ax1/Ax2* Ax1/Ax2* Ax1/Ax2* Ax1/Ax2*
Ax1/Ax2* 强筋
Gpc Gpc-B1- 籽粒蛋白质含量正常 Gpc-B1+ Gpc-B1- Gpc-B1- Gpc-B1-
Gpc-B1+ 籽粒蛋白质含量增加
NAM-6A A1c/A1d 籽粒蛋白质含量正常 A1c/A1d A1c/A1d A1c/A1d A1c/A1d
A1a/A1b 籽粒蛋白质含量增加
Psy-D1 Psy-D1a 黄色素含量低 Psy-D1g Psy-D1g Psy-D1g Psy-D1g
Psy-D1g 黄色素含量高
Zds-A1 Zds-A1a 黄色素含量高 Zds-A1a Zds-A1a Zds-A1a Zds-A1a
Zds-A1b 黄色素含量低
TaPds-B1 TaPds-B1a 黄色素含量高 TaPds-B1a TaPds-B1a TaPds-B1b TaPds-B1a
TaPds-B1b 黄色素含量低
Pod-A1 TaPod-A1a 过氧化物酶含量低 TaPod-A1a TaPod-A1a TaPod-A1a TaPod-A1b
TaPod-A1b 过氧化物酶含量高
Lox-B1 Lox-B1b 脂肪氧化酶含量低 Lox-B1a Lox-B1a Lox-B1a Lox-B1a
Lox-B1a 脂肪氧化酶含量高
SST-4D TaSST-D1a 可溶性糖含量高 TaSST-D1b TaSST-D1b TaSST-D1b TaSST-D1a
TaSST-D1b 可溶性糖含量低

Table 6

KASP test results of stress and disease resistance related genes"

基因
Gene
等位变异
Allelic variation
表型
Phenotype
漯麦163
Luomai 163
漯麦47
Luomai 47
漯麦49
Luomai 49
漯麦36
Luomai 36
TaDreb-B1 TaDreb-B1a 抗旱 TaDreb-B1b TaDreb-B1b TaDreb-B1b TaDreb-B1a
TaDreb-B1b 不抗旱
1-fehw3 Kauz type 不抗旱 Kauz type Kauz type Kauz type Kauz type
Westonia type 抗旱
TaPHS1 NW97S186 type 感穗发芽 Rio Blanco type Rio Blanco type Rio Blanco type Rio Blanco type
Rio Blanco type 抗穗发芽
Sdr-B1 TaSdr-B1b 感穗发芽 TaSdr-B1a TaSdr-B1a TaSdr-B1a TaSdr-B1a
TaSdr-B1a 抗穗发芽
COMT-3B COMT-3Ba 木质素含量高 COMT-3Ba COMT-3Ba COMT-3Ba COMT-3Ba
COMT-3Bb 木质素含量低
Pm21 Pm21- 感病 Pm21- Pm21- Pm21- Pm21-
Pm21+ 抗病
Fhb1 Fhb1- 感病 Fhb1- Fhb1+ Fhb1- Fhb1-
Fhb1+ 抗病
Yr78 Yr78- 感病 Yr78+ Yr78+ Yr78+ Yr78-
Yr78+ 抗病
Lr46 Lr46- 感病 Lr46- Lr46- Lr46- Lr46-
Lr46+ 抗病
Lr16/kwm847 Lr16- 感病 N Lr16+ Lr16+ Lr16-
Lr16+ 抗病
Lr16/kwm849 Lr16- 感病 N Lr16+ Lr16+ Lr16-
Lr16+ 抗病
Lr48 Lr48- 感病 Lr48- Lr48- Lr48- Lr48-
Lr48+ 抗病
[1] 葛昌斌, 黄杰, 王君, 等. ‘漯麦6010’及其衍生系赤霉病抗性和品质性状评价. 天津农业科学, 2021, 27(10):47-52,56.
[2] 黄杰, 乔冀良, 张振永, 等. 河南省小麦品种对赤霉病的抗性分析. 安徽农业科学, 2017, 45(8):31,52.
[3] 高耸. 小麦品种HMW-GS组成及其与品质性状的相关分析. 武汉: 华中农业大学 2020.
[4] 李刘龙, 李秀, 王小燕. 灌浆期遮光对不同小麦品种产量的影响. 河南农业科学, 2020, 49(5):31-39.
[5] 宋晓朋, 孔子明. 107份小麦育种亲本重要农艺性状基因的KASP检测. 种子, 2023, 42(9):132-136,147.
[6] Semagn K, Babu R, Hearne S, et al. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Molecular Breeding, 2014, 33(1):1-14.
[7] 杨青青, 唐家琪, 张昌泉, 等. KASP标记技术在主要农作物中的应用及展. 生物技术通报, 2022, 38(4):58-71.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1378
[8] Trick M, Adamskin M, Mugford S G, et al. Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biology, 2012, 12(14):1-17.
[9] 王君婵, 吴旭江, 胡文静, 等. 扬麦系列品种(系)重要性状功能基因的KASP检测. 江苏农业学报, 2019, 35(6):1271-1283.
[10] 单子龙, 班进福, 赵彦坤, 等. 河北省小麦品质相关基因的KASP标记检测. 作物杂志, 2020(4):64-71.
[11] 王志伟, 王志龙, 乔祥梅, 等. 云南小麦品种(系)锈病和赤霉病抗性功能基因的KASP标记检测. 作物杂志, 2020(1):187-193.
[12] 李玮, 孔淑鑫, 宋国琦, 等. 31份小麦材料中抗旱基因的KASP检测. 麦类作物学报, 2023, 43(10):1241-1247.
[13] Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology, 1985, 5(2):69-76.
doi: 10.1007/BF00020088 pmid: 24306565
[14] Rasheed A, Wen W, Gao F, et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 2016, 129(10):1843-1860.
doi: 10.1007/s00122-016-2743-x pmid: 27306516
[15] Gale M D, Marshall G A, Gale M D, et al. Thechromosomal location of Gai1 and Rht1, genes for Gibberellin insensitivity and semi-dwarfism, in a derivative of Norin 10 wheat. Heredity, 1976,37:283-289.
[16] Korzu N V, Rder M S, Ganal M W, et al. Genetic analysis of the darfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 1998, 96(8):1104-1109.
[17] 张德强, 宋晓朋, 冯洁, 等. 黄淮麦区小麦品种矮秆基因Rht-B1bRht-D1bRht8的检测及其对农艺性状的影响. 麦类作物学报, 2016, 36(8):975-981.
[18] 张中州, 望俊森, 鲁进恒, 等. 漯河地区小麦高产品种(系)农艺性状的KASP标记检测. 江苏农业科学, 2024, 52(1):34-40.
[19] Seki M, Chono M, Nishimura T, et al. Distribution of photoperiod-insensitive allele Ppd-A1a and its effect on heading time in Japanese wheat cultivars. Breeding Science, 2013, 63(3):309-316.
[20] Jiang Q, Hou J, Hao C, et al. The wheat (T.aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Functional & Integrative Genomics, 2011, 11(1):49-61.
[21] 王志伟, 王志龙, 乔祥梅, 等. 云南小麦品种(系)株高和粒重相关功能基因的KASP标记检测. 种子, 2020, 39(3):1-6.
[22] 徐晶晶. 青海省育成小麦品种(系)资源的分子评价. 西宁: 青海大学 2017.
[23] 刘红美, 祝梓博, 田秋珍, 等. 中国黄淮麦区小麦籽粒硬度Puroindoline基因等位变异检测. 分子植物育种, 2016, 14 (10):2700-2715.
[24] 袁谦, 张锋, 张中州, 等. 国审小麦品种漯麦18重要功能基因的KASP标记检测. 江苏农业科学, 2021, 49(24):56-59.
[25] 张剑, 马冬云, 张艳苹, 等. 小麦HMW-GS对面粉及馒头品质的影响. 食品与发酵工业, 2015, 41(1):74-79.
[26] 权威, 马锦绣, 庞斌双, 等. 外引小麦种质资源HMW-GS组成及品质评价. 植物遗传资源学报, 2020, 21(5):1124-1134.
doi: 10.13430/j.cnki.jpgr.20200103003
[27] 何中虎, 夏先春, 陈新民, 等. 中国小麦育种进展与展望. 作物学报, 2011, 37(2):202-215.
[28] 胡瑞波. 小麦面粉与面条色泽的影响因素及其稳定性分析. 泰安: 山东农业大学 2004.
[29] 单宝雪, 刘秀坤, 肖延军, 等. 济麦44/济麦229重组自交系群体籽粒蛋白质含量QTL分析. 山东农业科学, 2024, 56(1):1-9.
[30] 樊继伟, 王康君, 张广旭, 等. 黄淮麦区不同小麦品种氮素利用差异分析. 江苏农业科学, 2022, 50(4):43-51.
[31] 杜莹莹, 顾正中, 周羊梅, 等. 江苏淮北小麦品种(系)重要性状功能基因的KASP检测. 麦类作物学报, 2023, 43(3):279-287.
[32] 王震, 李金秀, 张彬, 等. 不同生态区小麦品种的穗发芽抗性评价. 应用生态学报, 2020, 31(12):4161-4170.
doi: 10.13287/j.1001-9332.202012.022
[33] 贺洁, 孙少光, 葛昌斌, 等. 不同小麦品种(系)茎秆显微结构、生化组分与茎秆强度的关系. 华北农学报, 2022, 37(1):68-76.
doi: 10.7668/hbnxb.20192493
[34] 张一博. 中国冬小麦主产区候选品种条锈病抗病性评价与基因检测. 杨凌: 西北农林科技大学 2022.
[35] 刘易科, 佟汉文, 朱展望, 等. 小麦赤霉病抗性改良研究进展. 麦类作物学报, 2016, 36(1):51-57.
[36] 于士男. 258份小麦种质的赤霉病、条锈病抗性与主要品质性状研究. 郑州: 河南农业大学 2023.
[1] Yu Tao, Zhang Jianguo, Cao Jingsheng, Ma Xuena, He Chang’an, Cao Shiliang, Li Shujun, Cai Quan, Li Xin, Li Sinan, Yang Gengbin, Li Wenyue. Identification and Evaluation of Low Temperature Tolerance of 110 New Maize Materials at Germination Stage [J]. Crops, 2024, 40(5): 18-28.
[2] Lu Jiahui, Wang Shuang, Li Yun, Guo Zhenqing, Wang Jian, Han Yucui, Lin Xiaohu. Effects of Reduced Nitrogen Application on Nitrogen Utilization and Grain Quality in Different Organs of Spring Wheat [J]. Crops, 2024, 40(5): 220-227.
[3] Zhang Lusheng, Chang Huihong, Zhang Yufan, Han Xiaowei, Zhang Baoshuai, Wang Xiaomeng, Wang Ziqiang, Tian Xuehui. Effects of Wheat High-Low Border Cultivation Pattern on the Occurrence of Diseases, Pests and Weeds [J]. Crops, 2024, 40(5): 235-240.
[4] Guo Ting, Liu Yuwei, Wu Jinrong, Ban Ruijuan, Yue Wenran, Li Zhe, Wang Lihua, Zhang Xiaoyu. Biological Activity and Field Control Effects of Several Fungicides against Buckwheat Stem Canker by Rhizoctonia spp. [J]. Crops, 2024, 40(5): 247-254.
[5] Zhang Lili, Li Zhenyu, Chen Guanghong, Wang Shaolin, Xia Ming, Zheng Yingjie, Wang Ying, Wang Tong, Mao Ting, Yu Yahui. Analysis and Evaluation of Nutrient Composition of Special Rice Germplasm Resources Based on the Principal Component Analysis [J]. Crops, 2024, 40(5): 40-47.
[6] Li Chunhua, Wu Han, Jiayangduola , Wang Chunlong, Wang Yanqing, Ren Changzhong. Effects of Sowing Date on Agronomic Traits and Yield of Common Buckwheat Varieties (Lines) [J]. Crops, 2024, 40(4): 216-222.
[7] Li Chunqing, Liu Xiangyu, Yan Peng, Zhou Liuqian, Lu Lin, Dong Zhiqiang, Xu Jiang. Physiological Identification and Comprehensive Evaluation of Drought Resistance of Different Maize Varieties [J]. Crops, 2024, 40(4): 253-262.
[8] Zhang Ziyi, Wang Xuehu, Yuan Ying, Shen Zhifeng. Effects of Humic Acid Suspension Agent on Seed Germination and Seedling Growth of Wheat under NaCl Stress [J]. Crops, 2024, 40(4): 263-268.
[9] Song Quanhao, Cao Yanwei, Jin Yan, Xiao Yonggui, Song Jiajing, Zhao Lishang, Chen Jie, Bai Dong, Zhu Tongquan. Comprehensive Evaluation of 50 Wheat Germplasm Resources Derived from ICARDA [J]. Crops, 2024, 40(4): 54-61.
[10] Fan Yu, Feng Liang, Wang Junzhen, Yang Qiaohui, Ren Yuanhang, Zhang Kaixuan, Zou Liang, Zhou Meiliang, Xiang Dabing. Nutritional Composition Analysis of Different Oats Varieties [J]. Crops, 2024, 40(4): 71-81.
[11] Yan Jinlong, Zhang Dongxu, Feng Liyun, Wu Zhiyuan, Li Yijuan, Zhang Junling. Identification of Disease Resistance-Related Genes of Wheat Cultivars (Lines) in Southeastern Shanxi by KASP Assays [J]. Crops, 2024, 40(4): 90-95.
[12] Li Han, Zhao Yuxue, Zhou Xiaoke, Li Yun, Guo Zhenqing, Wang Jian, Han Yucui, Lin Xiaohu. Effects of Simulated Seawater Stress on Wheat Germination [J]. Crops, 2024, 40(4): 96-102.
[13] Zhang Suyu, Yue Junqin, Li Xiangdong, Jin Haiyang, Ren Dechao, Yang Mingda, Shao Yunhui, Wang Hanfang, Fang Baoting, Zhang Deqi, Shi Yanhua, Qin Feng, Cheng Hongjian. Effects of Nitrogen Application on Photosynthetic Rate, Dry Matter Accumulation after Anthesis and Yield of Zhengmai 366 [J]. Crops, 2024, 40(3): 127-132.
[14] Liu Chunhui, Du Ruixia, Wang Yongxing, Yang Qinfang, Shan Feibiao, Xu Fuxun, Zhao Yuxin, Chen Shushu, Liu Wei. Relationship between Meteorological Factors and DUS Test Measurement Traits of Sunflower [J]. Crops, 2024, 40(3): 156-162.
[15] Sun Hui, Zhao Changping, Yue Jieru, Bai Xiucheng, Yang Jifang, Ye Zhijie, Zhang Fengting. Effects of Different Ecological Environments and Daily Temperature Difference on Fertility Alteration and Agronomic Traits in BS Type Photo-Thermal Sensitive Male Sterile Wheat Lines [J]. Crops, 2024, 40(3): 40-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!