Crops ›› 2025, Vol. 41 ›› Issue (3): 108-115.doi: 10.16035/j.issn.1001-7283.2025.03.015

Previous Articles     Next Articles

Study on the Effect of Different Nitrogen Fertilizer Synergists on Reducing Gaseous Nitrogen Loss and Increasing Yield in Wheat Field of Northern Henan

He Yunxia(), Ma Jianhui, Zhang Daijing, Liu Donghua, Chao Xiaoyan, Chen Huiping, Li Chunxi()   

  1. College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
  • Received:2024-03-07 Revised:2024-04-09 Online:2025-06-15 Published:2025-06-03

Abstract:

In order to investigate the effects of nitrogen fertilizer synergists on gaseous nitrogen loss and yield increase in wheat fields of northern Henan, nine nitrogen application measures were set up, including no fertilizer+no synergist (CK), 20% nitrogen reduction+no synergist (U1), normal application of nitrogen+no synergist (U2), 20% nitrogen reduction+1% of pure nitrogen amount of urease inhibitor (NBPT) (T1), 20% nitrogen reduction+1% of pure nitrogen amount of nitrification inhibitor (DMPP) (T2), 20% nitrogen reduction+1/2NBPT+1/2DMPP (T3), normal application of nitrogen+1% of pure nitrogen amount of NBPT (T4), normal application of nitrogen+1% of pure nitrogen amount of DMPP (T5), and normal application of nitrogen+1/2NBPT+1/2DMPP (T6). The results showed that the yields at the same N application level were all higher in the T3 and T6 treatments than those in the other treatments; during the wheat growth period, compared with the U2 treatment, T3 and T6 increased the soil NH4+ content by 12.23%-36.10% and 0.72%-49.47%, the leaf area index by 7.79%-21.32% and 10.08%-49.54%, and the dry matter accumulation by 20.32%-35.25% and 13.56%-40.43%; reduced soil NO3- contents 6.51%-34.56% and 5.47%-40.20%, N2O discharge flux 31.73%- 72.53% and 24.63%-67.84%, and reduced cumulative N2O discharge flux 32.89% and 26.67%, all improved the efficiency of N fertilizer utilization. Therefore, the combination of 20% nitrogen reduction with urease inhibitor and nitrification inhibitor can significantly reduce greenhouse gas emissions without reducing yield, which is conducive to the green and efficient production of winter wheat.

Key words: Wheat, Nitrogen fertilizer synergists, Ammonium nitrogen, Nitrate nitrogen, Leaf area index, Dry matter accumulation, Yield

Table 1

Different treatments of fertilization schemes kg/hm2"

处理Treatment 肥料Fertilizer N P2O5 K2O NBPT DMPP
CK 不施肥、不施增效剂 0 0 0 0 0
U1 减氮20%、不施增效剂 192 150 90 0 0
U2 正常施氮、不施增效剂 240 150 90 0 0
T1 减氮20%、纯氮量的1% NBPT 192 150 90 2.4 0
T2 减氮20%、纯氮量的1% DMPP 192 150 90 0 2.4
T3 减氮20%、1/2 NBPT+1/2 DMPP 192 150 90 1.2 1.2
T4 正常施氮、纯氮量的1% NBPT 240 150 90 2.4 0
T5 正常施氮、纯氮量的1% DMPP 240 150 90 0 2.4
T6 正常施氮、1/2 NBPT+1/2 DMPP 240 150 90 1.2 1.2

Fig.1

Effects of different nitrogen fertilizer synergists on LAI of wheat The different lowercase letters indicate significant difference at P < 0.05 level, the same below."

Fig.2

Effects of different nitrogen fertilizer synergists on the dry matter accumulation of wheat"

Fig.3

Effects of different nitrogen fertilizer synergists on NH4+ contents in soil"

Fig.4

Effects of different nitrogen fertilizer synergists on NO3? contents in soil"

Fig.5

Effects of different nitrogen fertilizer synergists on N2O in wheat"

Table 2

Effects of different nitrogen fertilizer synergists on wheat yield and its components"

处理Treatment 穗数Spike number (/m2) 穗粒数Grains per spike 千粒重1000-grain weight (g) 产量Yield (kg/hm2)
CK 515.00±9.00f 45.67±7.62ab 34.38±0.11de 7025.68±551.37d
U1 639.00±14.73e 47.33±5.03ab 35.54±0.41bcd 9357.55±211.92c
U2 667.67±6.53cd 47.67±1.53ab 36.63±0.46b 10 140.44±190.63bc
T1 671.00±8.13cd 52.00±4.36a 35.19±0.61cd 10 684.44±377.56bc
T2 655.67±12.34de 49.00±1.73ab 33.55±0.34e 9380.92±523.68c
T3 734.33±12.66ab 51.67±1.53a 35.24±1.24cd 11 645.77±422.98ab
T4 683.33±11.50c 45.67±1.15ab 38.04±0.66a 10 324.85±263.74bc
T5 718.00±18.33b 43.00±2.65b 37.99±0.97a 10 208.97±236.57bc
T6 743.33±6.03a 52.33±3.06a 36.19±0.78bc 12 303.94±378.05a

Table 3

Effects of different nitrogen fertilizer synergists on nitrogen use efficiency of wheat"

处理
Treatment
氮素偏生产力
NPFP (kg/kg)
氮肥农学效率
NAE (kg/kg)
氮素收获指数
NHI (%)
CK 61.64±1.63c
U1 48.74±0.59cd 12.15±1.15b 64.30±0.19bc
U2 42.25±0.79d 10.60±0.03b 64.64±0.68bc
T1 55.65±0.09ab 19.06±0.40a 69.07±0.20a
T2 48.86±0.72cd 12.27±0.14b 63.38±0.95c
T3 60.66±0.80a 24.06±1.02a 64.40±0.59bc
T4 43.02±1.10d 11.37±0.37b 65.10±0.99bc
T5 42.54±0.49d 10.89±0.94b 61.34±0.59c
T6 51.27±0.58bc 19.62±0.51a 67.98±0.70ab
[1] Zhang L, Wei Z B, Wang L L, et al. Fate of urea and ammonium sulfate in the plant and soil system as affected by poly-γ-glutamic acid. Journal of Soil Science and Plant Nutrition, 2022, 22(2):2457-2468.
[2] 王则宇. 劳动力结构变化对粮食生产化肥利用效率的影响研究. 武汉:华中农业大学, 2018.
[3] 旷爱萍, 谢凯承. 我国化肥施用量影响因素研究. 北方农业学报, 2022, 50(6):40-49.
doi: 10.12190/j.issn.2096-1197.2022.06.06
[4] Sha Z P, Ma X, Wang J X, et al. Effect of N stabilizers on fertilizer-N fate in the soil-crop system: a meta-analysis. Agriculture,Ecosystems & Environment, 2020,290:106763.
[5] Bodirsky B L, Popp A, Lotze-Campen H, et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications, 2014, 5(1):3858.
[6] 曾科, 王书伟, 朱文彬, 等. 不同硝化抑制剂对稻季N2O排放、NH3挥发和水稻产量的影响. 土壤, 2023, 55(3):503-511.
[7] 李长青, 纪萌, 马萌萌, 等. 天然增效剂与化学抑制剂复配对小麦/玉米轮作体系产量、氮素利用及氮平衡的影响. 应用生态学报, 2023, 34(9):2391-2397.
doi: 10.13287/j.1001-9332.202309.012
[8] Liu C Y, Wang K, Zheng X H. Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat-maize cropping system. Biogeosciences, 2013, 10(4):2427-2437.
[9] 阚建鸾, 王晓云, 苏建平, 等. 不同氮肥抑制剂对小麦产量、土壤肥力、氮肥利用率的影响. 中国农学通报, 2023, 39(5):69-74.
doi: 10.11924/j.issn.1000-6850.casb2022-0825
[10] 李莉, 李东坡, 武志杰, 等. 脲酶/硝化抑制剂对尿素氮在白浆土中转化的影响. 植物营养与肥料学报, 2011, 17(3):646-650.
[11] 赵婉伊, 徐卫红, 王崇力, 等. 脲酶―硝化抑制剂缓释肥对不同土壤氮素释放特性及黄瓜NPK吸收利用的影响. 水土保持学报, 2017, 31(3):250-257.
[12] 张文学, 王少先, 夏文建, 等. 脲酶抑制剂与硝化抑制剂对稻田土壤硝化、反硝化功能菌的影响. 植物营养与肥料学报, 2019, 25(6):897-909.
[13] 王静, 王允青, 张凤芝, 等. 脲酶/硝化抑制剂对沿淮平原水稻产量、氮肥利用率及稻田氮素的影响. 水土保持学报, 2019, 33(5):211-216.
[14] 胡林. 植物叶面积系数法改进研究. 中国农学通报, 2015, 31(5):228-233.
doi: 10.11924/j.issn.1000-6850.2014-2300
[15] 张文学, 杨春成, 王少先, 等. 脲酶抑制剂与硝化抑制剂对稻田土壤氮素转化的影响. 中国水稻科学, 2017, 31(4):417-424.
doi: 10.16819/j.1001-7216.2017.7008 417
[16] Byrnes B H, Freney J R. Recent developments on the use of urease inhibitors in the tropics. Fertilizer Research, 1995,42:251-259.
[17] Wallace A J, Armstrong R D, Grace P R, et al. Nitrogen use efficiency of 15N urea applied to wheat based on fertiliser timing and use of inhibitors. Nutrient Cycling in Agroecosyst, 2020, 116 (1):41-56.
[18] Tian H, Xu R, Canadell J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586(7828):248-256.
[19] Liu Q L, Ma J J, Sun X H, et al. Research advancement on soil nitrification-denitrification and its influencing factors. Agricultural Engineering, 2011, 1(4):79-83.
[20] Zhang Y Y, Wang W J, Yao H Y. Urea-based nitrogen fertilization in agriculture: a key source of N2O emissions and recent development in mitigating strategies. Archives of Agronomy and Soil Science, 2023, 69(5):663-678.
[21] Tian X S, Yin Y L, Zhuang M H, et al. Bottom-up estimates of reactive nitrogen loss from Chinese wheat production in 2014. Scientific Data, 2022, 9(1):233.
doi: 10.1038/s41597-022-01315-4 pmid: 35614078
[22] Wang J X, Sha Z P, Zhang J R, et al. Improving nitrogen fertilizer use efficiency and minimizing losses and global warming potential by optimizing applications and using nitrogen synergists in a maize-wheat rotation. Agriculture,Ecosystems & Environment, 2023,353:108538.
[23] Wang H Y, Zhang D F, Zhang Y T, et al. Ammonia emissions from paddy fields are underestimated in China. Environmental Pollution, 2018,235:482-488.
[24] 伊英杰, 韩坤, 赵斌, 等. 长期不同施肥措施冬小麦―夏玉米轮作体系周年氨挥发损失的差异. 中国农业科学, 2022, 55 (23):4600-4613.
doi: 10.3864/j.issn.0578-1752.2022.23.003
[25] Cantarella H, Otto R, Soares J R, et al. Agronomic efficiency of NBPT as a urease inhibitor: a review. Journal of Advanced Research, 2018,13:19-27.
[26] He T H, Liu D Y, Yuan J J, et al. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field. Agriculture,Ecosystems & Environment, 2018,264:44-53.
[27] 刘世腾, 刘春丽, 李开春, 等. 氮肥增效剂对石灰性潮土氨挥发及冬小麦产量的影响. 中国土壤与肥料, 2023(3):1-6.
[28] 倪秀菊. 几种抑制剂对尿素水解和土壤硝化作用的影响. 北京: 中国农业科学院, 2010.
[29] 郭海, 杨鹏金, 李录久, 等. 氮肥基追比例运筹方式对水稻生长和肥料利用效率的影响. 现代农业科技, 2015(20):20,27.
[30] 任寒, 朱国梁, 董浩, 等. 减施配方控释肥调控土壤理化性状与稳定夏玉米产量. 土壤通报, 2022, 53(6):1440-1446.
[31] 郑利芳, 吴三鼎, 党廷辉. 不同施肥模式对春玉米产量、水分利用效率及硝态氮残留的影响. 水土保持学报, 2019, 33(4):221-227.
[32] 李欢, 李扬, 杨清夏, 等. 缓释尿素一次性施用在玉米减氮增效中的作用. 南方农业学报, 2021, 52(4):967-975.
[33] Liang H Y, Shen P F, Kong X Z, et al. Optimal nitrogen practice in winter wheat-summer maize rotation affecting the fates of 15N-labeled fertilizer. Agronomy, 2020, 10(4):521.
[34] Zheng J, Fan J L, Zhang F C, et al. Interactive effects of mulching practice and nitrogen rate on grain yield, water productivity, fertilizer use efficiency and greenhouse gas emissions of rainfed summer maize in northwest China. Agricultural Water Management, 2021,248:106778.
[1] Hou Yue, Wang Hongliang, Li Jie, Li Chunjie, Chen Fanjun. Research Advances on the Effects of Cereal/Legume Forage Intercropping on Forage Quality and Nitrogen Uptake [J]. Crops, 2025, 41(3): 1-10.
[2] Wang Jiatong, Ma Yingchen, Feng Yanfei, Lu Jiahui, Guo Zhenqing, Li Xueli, Li Yun, Han Yucui, Lin Xiaohu. Effects of Reduction of Nitrogen Topdressing Application on Phosphorus and Potassium Fertilizer Utilization and Quality of Spring Wheat in Eastern Hebei Province [J]. Crops, 2025, 41(3): 141-148.
[3] Wang Yi, Ren Yongfu, Zhang Zhengpeng, Ding Defang, Zhang Jing, Liu Yihong, Sun Duoxin, Chen Guangrong. The Effects of Different Covering Materials on Soil Environment and Maize Yield in Hexi Irrigation Area [J]. Crops, 2025, 41(3): 149-155.
[4] Li Jiahao, Jia Yonghong, Lian Shihao, Liu Yue, Yu Shan, Tian Wenqiang, Wang Ziqian, Zhang Jinshan, Shi Shubing. Effects of Prohexadione-Calcium and Phosphorus Application Rate on the Growth, Dry Matter Accumulation, and Yield of Winter Wheat [J]. Crops, 2025, 41(3): 165-171.
[5] Cao Zhengnan, Zhao Zhendong, Hu Bo, Yu Han, Ning Xiaohai, Zhao Zeqiang, Cao Liyong. Effects of Nitrogen Fertilizer and Promoting Rot Bacteria Fertilizer on Decomposition Effect of Returning Rice Straw to Field and Yield in Cold Regions [J]. Crops, 2025, 41(3): 172-177.
[6] Hou Nan, Wu Fengjie, Qi Xiangkun, Wang Yufeng, Yang Kejun, Fu Jian. Effects of Different Nitrogen Application Levels on Carbon Metabolism of Waxy Maize during Filling Period in Black Soil Area [J]. Crops, 2025, 41(3): 178-184.
[7] Zhu Jindi, Zhu Xuegang, Du Wenqing, Qiu Tuoyu, Zhao Xinbin. Effects of Chemical Fertilizer Reduction Combined with Organic Fertilizer Application on Photosynthetic Characteristics, Quality and Yield of Tomatoes Cultivated in Facilities [J]. Crops, 2025, 41(3): 185-189.
[8] Li Hu, Huang Qiuyao, Wu Zishuai, Liu Guanglin, Chen Chuanhua, Luo Qunchang, Zhu Qinan. Effects of Planting Density and Nitrogen Application Rate on Yield and Rice Quality of High-Quality Conventional Rice Guiyu 12 [J]. Crops, 2025, 41(3): 195-201.
[9] Lan Xiu, Li Hengrui, He Hongliang, Ma Xianhua, Huang Xiaojuan, Li Tianyuan, Wei Haiqiu, Jiang Qingmei, Ruan Lixia, Yang Haixia, Liu Bingji, Tang Danfeng. Effects of Intercropping of Sugarcane and Platostoma palustre on Crop Yield, Quality and Economic Benefit [J]. Crops, 2025, 41(3): 202-209.
[10] Wei Mengyang, Luo Zhenbao, He Shuai, Ma Qian, Ma Guankai, Xi Feihu, Luo Dongsheng, Jing Yanqiu, Yu Qiwei, Wang Maoxian. Effects of Interaction between Photosynthetic Bacteria and the Number of Retained Leaves on Physiological Metabolism, Chemical Quality, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2025, 41(3): 210-217.
[11] Yang Zepeng, Wan Kejun, Zheng Shenghua, Ao Yuqin, Ma Mingkun, Wan Xue, Li Shanshan, Song Xin, Wang Changtao, Chen Shanghong, Liu Dinghui, Chen Honglin. Effects of Nitrogen Fertilizer and Seeding Amount Configuration on Yield Formation of Rapeseed by Aerial Seeding [J]. Crops, 2025, 41(3): 225-232.
[12] Liang Hui, Zhang Jianxin, Xue Lihua, Jia Keke. Effects of Drip Irrigation Amount on Root Growth and Yield of Xinnongdou 2 under the Condition of the Postpone of Water and Nitrogen [J]. Crops, 2025, 41(3): 233-240.
[13] Fan Ming, Li Hongxia, Wang Ke, Tang Huali, Yang Le, Li Qianrong, Ye Xingguo, Zhang Shuangxi. Breeding and Cultivation Techniques of a New Wheat Variety Ningchun 66 with Powdery Mildew Resistance [J]. Crops, 2025, 41(3): 249-254.
[14] Huang Ming, Fu Xinxin, Zhang Zhenwang, Zhang Jun, Li Youjun. Effects of Seed Sizes on Seed Germination, Seedling Characteristics and Drought Resistance of Dryland Wheat [J]. Crops, 2025, 41(3): 255-262.
[15] Wang Heya, Luo Jingjing, Meng Ling, Ai Haifeng, Wang Bin, Li Huaisheng, Xu Jingpeng, Xu Xiangyang. Yield Sensitivity Analysis of Edible Sunflower Varieties in Taʼe Basin [J]. Crops, 2025, 41(3): 30-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!