Crops ›› 2025, Vol. 41 ›› Issue (3): 141-148.doi: 10.16035/j.issn.1001-7283.2025.03.019

Previous Articles     Next Articles

Effects of Reduction of Nitrogen Topdressing Application on Phosphorus and Potassium Fertilizer Utilization and Quality of Spring Wheat in Eastern Hebei Province

Wang Jiatong(), Ma Yingchen, Feng Yanfei, Lu Jiahui, Guo Zhenqing, Li Xueli, Li Yun, Han Yucui(), Lin Xiaohu()   

  1. College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology /Hebei Key Laboratory of Crop Stress Biology, Qinhuangdao 066004, Hebei, China
  • Received:2024-04-06 Revised:2024-05-24 Online:2025-06-15 Published:2025-06-03

Abstract:

In order to examine the effects of nitrogen reduction on the utilization of phosphorus and potassium fertilizers as well as in spring wheat in eastern Hebei, we utilized spring wheat Jinqiang 11 as the material and set four nitrogen fertilizer levels (0, 80, 160, 240 kg/ha, denoted by N0, N80, N160, N240, respectively) with reference to the conventional nitrogen application for wheat planting in the production (N 240 kg/ha) to analyze the effects of nitrogen reduction on the phosphorus and patassium accumulations, amino acid contents, mineral element contents, and yields of spring wheat plants in eastern Hebei. The results showed that, nitrogen reduction increased phosphorus accumulation in the late reproductive stage, and the phosphorus accumulation at maturity was 45.68 kg/ha at N80, significantly higher than that at N160 and N240; Nitrogen reduction decreased potassium loss at the late reproductive stage, and the loss at maturity was 36.45% compared with that at flowering, which was significantly lower than N160 and N240. When nitrogen was reduced to N80 and N160, the contents of essential and non-essential amino acids and the total amount of amino acids were significantly higher than that of N0 and N240 treatments, which favored amino acid synthesis. All amino acid scores basically reached the maximum values under N80 and N160 treatments; the essential amino acid index reached the maximum value under N80 treatment, followed by N160 treatment, which were increased by 14.64% and 7.48% respectively, compared to N0 treatment, and increased by 13.19% and 6.12% compared with those under N240 treatment, respectively. That was, nitrogen-reduction of N80 and N160 could improve protein quality. Nitrogen-reduction of N80 and N160 resulted in higher Ca, Mg, Fe, Cu and Zn mineral elements, which could improve mineral element content of spring wheat. The yields of nitrogen-reduction treatments of N80 and N160 were considerably higher than those of N0 and N240 treatments, and there was no significant difference between N80 and N160. Considering the above factors, the optimum amount of nitrogen applied to spring wheat planted in eastern Hebei is recommended to be 80-160 kg/ha.

Key words: Spring wheat, Phosphorus and potassium accumulation, Amino acids, Mineral element, Quality

Fig.1

Phosphorus accumulation of plants at different growth stages under different nitrogen topdressing treatments The different lowercase letters indicate significant difference at 0.05 level, the same below."

Fig.2

Potassium accumulation of plants at different growth stages under different nitrogen topdressing treatments"

Table 1

Effects of different nitrogen topdressing treatments on amino acid contents of spring wheat mg/g"

指标Index N0 N80 N160 N240
必需氨基酸含量Essential amino acid content 67.38±0.82c 77.64±0.64a 72.75±0.56b 67.60±0.52c
非必需氨基酸含量Non-essential amino acid content 189.74±0.53c 219.27±0.77a 208.17±0.69b 188.89±0.27c
氨基酸总量Total amino acid content 257.12±0.82c 296.91±0.64a 280.92±0.56b 256.48±0.52c

Table 2

Effects of different nitrogen topdressing treatments on essential amino acid contents of spring wheat mg/g"

指标Index N0 N80 N160 N240 变异系数Coefficient of variation (%)
缬氨酸Val 10.76±0.82b 12.24±0.64a 11.20±0.56ab 11.10±0.52ab 5.63
蛋氨酸Met 3.35±0.17a 3.60±0.36a 3.78±0.16a 3.47±0.15a 5.13
异亮氨酸IIe 7.74±0.22c 9.33±0.47a 8.48±0.38b 7.79±0.10c 8.92
亮氨酸Leu 18.27±0.72c 21.67±0.15a 20.10±0.95b 17.98±0.10c 8.84
苯丙氨酸Phe 12.27±0.88b 14.16±0.73a 12.96±0.54ab 11.73±0.27b 8.22
苏氨酸Thr 7.94±0.67a 8.85±0.21a 8.89±0.34a 8.40±0.75a 5.24
赖氨酸Lys 7.05±0.50a 7.79±0.41a 7.33±0.30a 7.13±0.76a 4.52

Table 3

Effects of different nitrogen topdressing treatments on non-essential amino acid contents of spring wheat mg/g"

指标Index N0 N80 N160 N240 变异系数Coefficient of variation (%)
天冬氨酸Asp 12.65±0.53b 14.40±0.77a 13.29±0.69ab 12.70±0.27b 6.13
酪氨酸Tyr 7.58±0.65b 9.10±0.03a 7.61±0.56b 7.95±0.35b 8.82
丝氨酸Ser 14.22±0.75c 15.79±0.70ab 14.40±0.97bc 16.54±0.57a 7.32
谷氨酸Glu 82.87±6.81b 96.82±4.67a 95.10±2.77a 79.08±0.03b 9.97
甘氨酸Gly 11.46±0.38b 12.55±0.23a 11.84±0.69ab 11.84±0.29ab 3.82
丙氨酸Ala 10.35±0.16a 11.13±0.38a 11.11±0.65a 10.45±0.92a 3.87
胱氨酸Cys 3.89±0.25a 4.41±0.19a 4.15±0.68a 3.82±0.20a 6.56
组氨酸His 6.09±0.50a 6.85±0.08a 6.77±0.93a 6.44±0.04a 5.25
精氨酸Arg 12.02±0.26b 14.18±0.88a 12.92±0.81ab 12.20±0.65b 7.65
脯氨酸Pro 28.59±0.56c 34.04±1.35a 30.97±1.07b 27.84±0.15c 9.20
合计Total 189.72±0.53c 219.27±0.77a 208.16±0.69b 188.86±0.27c 6.84

Table 4

Effects of different nitrogen topdressing treatments on essential amino acid scores of spring wheat"

指标Index N0 N80 N160 N240
缬氨酸Val 21.52 24.48 22.40 22.20
蛋氨酸+胱氨酸Met+Cys 20.69 22.89 22.66 20.83
异亮氨酸IIe 19.35 23.33 21.20 19.48
亮氨酸Leu 26.10 30.96 28.71 25.69
苯丙氨酸+酪氨酸Phe+Tyr 33.08 38.77 34.28 32.80
苏氨酸Thr 19.85 22.13 22.23 21.00
赖氨酸Lys 12.82 14.16 13.33 12.96

Table 5

Effects of different nitrogen topdressing treatments on essential amino acid RC of spring wheat"

指标Index N0 N80 N160 N240
缬氨酸Val 0.98 0.97 0.95 1.00
蛋氨酸+胱氨酸Met+Cys 0.94 0.91 0.96 0.94
异亮氨酸IIe 0.88 0.92 0.90 0.88
亮氨酸Leu 1.19 1.23 1.22 1.16
苯丙氨酸+酪氨酸Phe+Tyr 1.51 1.54 1.46 1.48
苏氨酸Thr 0.91 0.88 0.94 0.95
赖氨酸Lys 0.58 0.56 0.57 0.59

Fig.3

Effects of different nitrogen topdressing treatments on essential amino acid index of spring wheat"

Table 6

Effects of different nitrogen topdressing treatments on mineral element contents of spring wheat mg/kg"

指标Index N0 N80 N160 N240
Ca 389.46±11.36b 429.42±1.29a 417.26±10.08a 410.77±15.36a
Mg 1073.32±6.73c 1137.98±4.43a 1121.31±6.68b 1115.29±2.44b
Fe 61.06±3.99d 116.31±4.74a 83.67±6.52b 72.30±4.43c
Mn 36.70±3.85a 37.34±0.94a 38.59±3.24a 38.78±4.85a
Cu 5.40±0.08b 6.49±0.44a 6.55±0.45a 6.12±0.45ab
Zn 35.17±0.15b 38.46±0.05b 46.26±3.60a 37.39±4.65b

Fig.4

Effects of different nitrogen topdressing treatments on yield of spring wheat"

[1] 张文霞, 李盼, 殷文, 等. 麦后复种绿肥及配施不同水平氮肥对小麦产量、品质及氮素利用的影响. 中国农业科学, 2023, 56(17):3317-3330.
doi: 10.3864/j.issn.0578-1752.2023.17.007
[2] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5):915-924.
[3] 白由路. 高效施肥技术研究的现状与展望. 中国农业科学, 2018, 51(11):2116-2125.
doi: 10.3864/j.issn.0578-1752.2018.11.009
[4] 裴雪霞, 党建友, 张定一, 等. 化肥减施下有机替代对小麦产量和养分吸收利用的影响. 植物营养与肥料学报, 2020, 26(10):1768-1781.
[5] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014, 20(4):783-795.
[6] 赵富林. 施氮量对不同年代小麦品种抗倒伏性、产量和品质的影响. 郑州:河南农业大学, 2023.
[7] 杨晓玲, 玉素甫江·玉素音, 胡雨彤, 等. 氮素用量对哈密巴里坤地区春小麦生长、养分吸收及肥料利用率的影响. 新疆农业大学学报, 2022, 45(2):158-164.
[8] 代新俊, 夏清, 杨珍平, 等. 氮肥后移对强筋小麦氮素积累转运及籽粒产量与品质的影响. 水土保持学报, 2018, 32(3):289-294.
[9] 郑志松, 王晨阳, 牛俊义, 等. 水肥耦合对冬小麦籽粒蛋白质及氨基酸含量的影响. 中国生态农业学报, 2011, 19(4):788-793.
[10] 蔡艳, 郝明德. 黄土高原长期施肥对小麦籽粒蛋白质营养品质的影响. 核农学报, 2013, 27(9):1378-1384.
doi: 10.11869/hnxb.2013.09.1378
[11] 介晓磊, 杨先明, 刘世亮, 等. 潮土长期定位施肥对小麦生理特性、产量及面粉品质的影响. 华北农学报, 2011, 26(3):157-163.
doi: 10.7668/hbnxb.2011.03.031
[12] 赵艳, 罗铮, 杨丽, 等. 氮肥运筹对稻茬小麦氮素转运、干物质积累、产量及品质的影响. 麦类作物学报, 2022, 42(8):1001-1011.
[13] Xu Z Y, Yu Z W, Zhao J Y. Theory and application for the promotion of wheat production in China:past,present and future. Journal of the Science of Food and Agriculture, 2013, 93(10):2339-2350.
[14] Nemat A, Noureldin H S, Saudy F, et al. Grain yield response index of bread wheat cultivars as influenced by nitrogen levels. Annals of Agricultural Sciences, 2013, 58(2):147-152.
[15] 代新俊, 杨珍平, 陆梅, 等. 不同形态氮肥及其用量对强筋小麦氮素转运、产量和品质的影响. 植物营养与肥料学报, 2019, 25(5):710-720.
[16] 陆晴, 马宏亮, 吴志会, 等. 冀东地区节水高产绿色春小麦栽培技术. 现代农村科技, 2020(9):13-14.
[17] 高雪慧, 刘强, 王钧. 基于APSIM模型的陇中旱地春小麦产量对播期、施氮和降水量变化的响应模拟. 麦类作物学报, 2022, 42(3):371-379.
[18] 高新, 汪烨霖, 朱泰武, 等. 不同施氮量对春小麦灌浆速率和产量的影响. 新疆农业科学, 2024, 61(2):310-317.
doi: 10.6048/j.issn.1001-4330.2024.02.006
[19] 蔡艳, 郝明德. 长期轮作对黄土高原旱地小麦籽粒蛋白质营养品质的影响. 应用生态学报, 2013, 24(5):1354-1360.
[20] 鲁艳红, 廖育林, 聂军, 等. 长期施肥红壤性水稻土磷素演变特征及对磷盈亏的响应. 土壤学报, 2017, 54(6):1471-1485.
[21] 谷贺贺, 李静, 张洋洋, 等. 钾肥与我国主要作物品质关系的整合分析. 植物营养与肥料学报, 2020, 26(10):1749-1757.
[22] 龚明强, 张枫, 顾帅娣, 等. 氮磷钾肥配施对小麦产量的影响. 现代农业科技, 2018(19):23-27.
[23] 赵俊晔, 于振文, 李延奇, 等. 施氮量对小麦氮磷钾养分吸收利用和产量的影响. 西北植物学报, 2006, 26(1):98-103.
[24] 昝亚玲. 氮磷对旱地冬小麦产量,养分利用及籽粒矿质营养品质的影响. 杨凌:西北农林科技大学, 2012.
[25] 龙素霞, 李芳芳, 石书亚, 等. 氮磷钾配施对小麦植株养分吸收利用和产量的影响. 作物杂志, 2018(6):96-102.
[26] 史辛凯, 于振文, 赵俊晔, 等. 施氮量对高产小麦光合特性、干物质积累分配与产量的影响. 麦类作物学报, 2021, 41(6):713-721.
[27] Chaudhary N, Dangi P, Khatkar S B. Assessment of molecular weight distribution of wheat gluten proteins for chapatti quality. Food Chemistry, 2016,19928-19935.
[28] Jonathan R. Co-ordinated expression of amino acid metabolism in response to N and S deficiency during wheat grain filling. Journal of Experimental Botany, 2008, 59(13):3675-3689.
doi: 10.1093/jxb/ern218 pmid: 18791197
[29] Penas E, Martinez C, Frias J. Protein quality of traditional rye breads and ginger cakes as affected by the Incorporation of flour with different extraction rates. Polish Journal of Food and Nutrition Sciences, 2013, 63(1):5-10.
[30] Zhang M W, Ma D Y, Wang C Y. Responses of amino acid composition to nitrogen application in high and low protein wheat cultivars at two planting environments. Crop Science, 2016, 56(3):1277-1287.
[31] 刘慧, 王朝辉, 李富翠, 等. 不同麦区小麦籽粒蛋白质与氨基酸含量及评价. 作物学报, 2016, 42(5):768-777.
[32] Chen C C, Han G Q, He H Q, et al. Yield, protein and remobilization of water soluble carbohydrate and nitrogen of three spring wheat cultivars as influenced by nitrogen input. Agronomy Journal, 2011, 103(3):786-795.
[33] 韩立杰, 董伟欣, 张月辰. 不同水肥处理对小麦冠层结构、产量和籽粒品质的影响. 浙江农业学报, 2020, 32(6):953-962.
doi: 10.3969/j.issn.1004-1524.2020.06.02
[34] 刘莹, 王德梅, 常旭虹, 等. 施氮量对黑土条件下春小麦品质的影响. 中国农学通报, 2018, 34(23):19-25.
doi: 10.11924/j.issn.1000-6850.casb17080131
[35] Zhang P P, Ma G, Wang C Y. Effect of irrigation and nitrogen application on grain amino acid composition and protein quality in winter wheat. PLoS ONE, 2017, 12(6):e0178494.
[36] 徐凤娇, 赵广才, 田奇卓, 等. 施氮量对不同品质类型小麦产量和加工品质的影响. 植物营养与肥料学报, 2012, 18(2):300-306.
[37] Millward D. Amino acid scoring patterns for protein quality assessment. British Journal of Nutrition, 2012, 108(增2):31-43.
[38] 郝虎林, 魏幼璋, 杨肖娥, 等. 供氮水平对稻株铁、锰、铜、锌含量和稻米品质的影响. 中国水稻科学, 2007, 21(4):411-416.
[39] 姜丽娜, 郑冬云, 蒿宝珍, 等. 氮肥对小麦不同品种籽粒微量元素含量的影响. 西北农业学报, 2009, 18(6):97-102.
[40] 方保停, 张胜全, 王敏, 等. 节水栽培条件下冬小麦籽粒微量元素和蛋白质含量对施氮的反应. 麦类作物学报, 2008, 28 (1):97-101.
[41] 黄玉芳, 叶优良, 赵亚南, 等. 施氮量对豫北冬小麦产量及子粒主要矿质元素含量的影响. 作物杂志, 2019(5):104-108.
[42] 罗付香, 林超文, 庞良玉, 等. 氮肥运筹对不同小麦品种籽粒微量元素含量和产量的影响. 麦类作物学报, 2011, 31(4):695-701.
[43] 田中伟, 樊永惠, 殷美, 等. 长江中下游小麦品种根系改良特征及其与产量的关系. 作物学报, 2015, 41(4):613-622.
[44] 王玲玲, 吴文革, 李瑞, 等. 施氮量对弱筋小麦籽粒品质与氮素利用的影响. 浙江农业学报, 2021, 33(5):777-784.
doi: 10.3969/j.issn.1004-1524.2021.05.01
[45] 安婷婷, 侯小畔, 周亚男, 等. 氮肥用量对小麦开花后根际土特性和产量的影响. 中国农业科学, 2017, 50(17):3352-3648.
doi: 10.3864/j.issn.0578-1752.2017.17.010
[46] 代丽婷, 刘宁涛, 车京玉, 等. 氮肥用量对春小麦灌浆特性、产量及其构成因素的影响. 黑龙江农业科学, 2022(5):29-33.
[1] Zhu Jindi, Zhu Xuegang, Du Wenqing, Qiu Tuoyu, Zhao Xinbin. Effects of Chemical Fertilizer Reduction Combined with Organic Fertilizer Application on Photosynthetic Characteristics, Quality and Yield of Tomatoes Cultivated in Facilities [J]. Crops, 2025, 41(3): 185-189.
[2] Li Hu, Huang Qiuyao, Wu Zishuai, Liu Guanglin, Chen Chuanhua, Luo Qunchang, Zhu Qinan. Effects of Planting Density and Nitrogen Application Rate on Yield and Rice Quality of High-Quality Conventional Rice Guiyu 12 [J]. Crops, 2025, 41(3): 195-201.
[3] Lan Xiu, Li Hengrui, He Hongliang, Ma Xianhua, Huang Xiaojuan, Li Tianyuan, Wei Haiqiu, Jiang Qingmei, Ruan Lixia, Yang Haixia, Liu Bingji, Tang Danfeng. Effects of Intercropping of Sugarcane and Platostoma palustre on Crop Yield, Quality and Economic Benefit [J]. Crops, 2025, 41(3): 202-209.
[4] Wei Mengyang, Luo Zhenbao, He Shuai, Ma Qian, Ma Guankai, Xi Feihu, Luo Dongsheng, Jing Yanqiu, Yu Qiwei, Wang Maoxian. Effects of Interaction between Photosynthetic Bacteria and the Number of Retained Leaves on Physiological Metabolism, Chemical Quality, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2025, 41(3): 210-217.
[5] Fan Ming, Li Hongxia, Wang Ke, Tang Huali, Yang Le, Li Qianrong, Ye Xingguo, Zhang Shuangxi. Breeding and Cultivation Techniques of a New Wheat Variety Ningchun 66 with Powdery Mildew Resistance [J]. Crops, 2025, 41(3): 249-254.
[6] Ma Yingchen, Wang Jiatong, Feng Yanfei, Ma Haoxiong, Ren Xuejun, Guo Zhenqing, Li Yun, Han Yucui, Lin Xiaohu. Impacts of the Residual Effects of the Combined Application of Compound Fertilizers and Microbial Inoculant on Soil Physicochemical Properties and Quality of Foxtail Millet [J]. Crops, 2025, 41(2): 141-148.
[7] Zhang Jili, He Jinghao, Wei Jianyu, Huang Chongjun, Wang Wei, Cai Yixia. Effects of Application Period of Microbial Inoculants on Rhizosphere Soil Bacterial Diversity, Enzyme Activity and Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2025, 41(2): 162-171.
[8] Zhang Lina, Yang Wenping, Su Miao, Zhang Zhixuan, Li Junhui, Aamir Ali, Chen Jie, Gao Zhiqiang, Yang Zhenping. Effect of Foliar Application of Selenium onNutritional Quality of Oat Grain [J]. Crops, 2025, 41(2): 196-206.
[9] Li Yunxia, Yang Jiashuo, Li Yangyang, Xiang Shipeng, Yu Jinlong, Li Bin, Zheng Weiwei, Liu Lu. Effects of Different Transplanting Periods on the Growth, Development and Yield Quality of Flue-Cured Tobacco in Tobacco-Rice Rotation Area [J]. Crops, 2025, 41(2): 222-227.
[10] Zhang Jiazhi, Zhao Yuhan, Ding Junjie, Yao Liangliang, Qiu Lei, Zhang Maoming, Wang Zijie, Gao Xuedong, Huang Chengliang, Cui Shize, Yang Xiaohe. Effects of “Double-Exemption Dense Seedling” Technique on Seedling Quality and Enzyme Activity of Rice in Cold Region [J]. Crops, 2025, 41(2): 109-114.
[11] Zhu Zijian, Chen Nana, Wu Yueying, Rang Zhongwen, Dai Linjian, Tian Minghui, Tian Feng, Yi Zhenxie. Effects of Nitrogen Application Rate, Planting Density and Retained Leaf Number on Yield and Quality of Xiangyan 7 in Tobacco Region of Western Hunan [J]. Crops, 2025, 41(1): 179-186.
[12] Yan Qunxiang, Pang Yuhui, Hong Zhuangzhuang, Bi Junge, Wang Chunping. Genetic Diversity Analysis and Specificity Evaluation of Main Traits of 141 Wheat Germplasm Resources at Domestic and Foreign [J]. Crops, 2025, 41(1): 26-34.
[13] Shen Shengfa, Xiang Chao, Meng Yusha, Li Bing, Wu Liehong. Breeding and Quality Characteristics of Multi-Purpose Sweet Potato Variety Zheshu 33 [J]. Crops, 2025, 41(1): 263-268.
[14] Zhao Ximei, Li Qi, Yan Ruyu, Xiang Fengyun, Li Yaqiong, Li Xuxun, Zou Jialong, Li Jifu. Effects of UAV Aerial Seeding Period and Seeding Methods on Yield, Quality and Economic Benefits of Winter Oilseed Rape [J]. Crops, 2024, 40(6): 179-185.
[15] Fan Ming, Zhang Shuangxi, Chen Jia, Zhang Jiao, Li Hongxia. Analysis of the Traits Related to Lodging-Resistance and Construction of a Comprehensive Evaluation System for Spring Wheat Varieties in Ningxia [J]. Crops, 2024, 40(6): 39-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!