Crops ›› 2016, Vol. 32 ›› Issue (1): 69-75.doi: 10.16035/j.issn.1001-7283.2016.01.013

Previous Articles     Next Articles

Analysis of the Flanking Sequence and Event-Specific Detection of Transgenic G2-EPSPS Line of Maize

Guo Cui1,2,Zhang Wei2,Yu Guirong3,Zhou Zhengfu2,Li Liang2,Feng Shuai1,2,Chen Ming2,Wang Jin1,2   

  1. 1 Life Science and Engineering College,Southwest University of Science and Technology,Mianyang 621010,Sichuan,China
    2 Biotechnology Research Institute,Chinese Academy of Agriculture Sciences,Beijing 100081,China
    3 Institute of Biological & Nuclear Technology,Sichuan Academy of Agricultural Sciences,Chengdu 610066,Sichuan,China;
  • Received:2015-10-20 Revised:2015-12-04 Online:2016-02-15 Published:2018-08-25
  • Contact: Jin Wang

Abstract:

By hiTAIL-PCR(3'-terminal high-efficiency thermal asymmetric interlaced PCR) and LD-PCR(long distance PCR),the complete sequence and flanking sequence of T-DNA in transgenic maize D-3 were obtained. A specific PCR detection method for transformant was also established. The results revealed that the total length of T-DNA was 4318 bp,which consisted of a G2-EPSPS gene expression cassette. The primers had been designed based on the 3' and 5' terminal flanking sequence,followed by specific PCR to detect the sensitivity as well as the detection limit. The results showed that 3'-qualitative PCR detection method was highly specific and sensitive,with a sensitivity of 0.05% per 100ng DNA template.This research provides the methods for the detection of exogenous gene in transgenic maize and the risk assessment on bio-safety.

Key words: Transgenic maize, G2-EPSPS, Flanking sequence, Event-specific detection

Table 1

The degenerate prime AD1-n and AD-C used in hiTAIL-PCR"

引物Primer 引物序列(5'-3')Primer sequence(5'-3')
AD1-1
AD1-2
AD1-3
AD1-4
AD-C
ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA
ACGATGGACTCCAGAGCGGCCGCBNBNNNGGTT
ACGATGGACTCCAGAGCGGCCGCVVNVNNNCCAA
ACGATGGACTCCAGAGCGGCCGCBDNBNNNAGGT
ACGATGGACTCCAGAG

Fig.1

Amplification and verification of the flanking sequence A: 3'-terminal hiTAIL-PCR of transgenic maize D-3; M: Trans 2K plusⅡ marker; 1-3: The result of 3' terminal hiTAIL-PCR amplification; B: The 3' terminal flanking sequence; The black body part is the T-DNA sequence; The italic part is 3' terminal flanking sequence; C: The 5' terminal flanking sequence; The black body part is the T-DNA sequence; the italic part is 5' terminal flanking sequence; D: Verificate flanking sequence by PCR; M:Trans 2k plusⅡDNA Marker; 1: The amplification products of LB-F1/LB-R;2: The amplification products of LB-F2/LB-R;3: The amplification products of LB-F3/LB-R; 4: The amplification products of RB-F1/RB-R; E: The putative transgenic structures of integrated structure and the primer design sketch"

Fig.2

Specificity detection with different primers by PCR M: Trans 2k plusⅡDNA Marker; 1: D-3; 2: 14sT133; 3: 255; 4: Negative control; 5: Blank."

Fig.3

Sensitivity detection for event-specific PCR M: Trans 2k plus ⅡDNA Marker; 1: Blank; 2: Negative control; 3-10: The content of DNA template: 100.00%, 50.00%, 10.00%, 5.00%, 1.00%, 0.50%, 0.10%, 0.05%."

Fig.4

The limit test for the event-specific detection A,B,and C.The amplification result of samples containing 0.10%,0.05%,and 0.01%,respectively; M: Trans 2k plus ⅡDNA Marker; 1~10: 10 paralles."

[1] 申爱娟, 陈松, 周晓盈 , 等. 转基因油菜W-4 T-DNA旁侧序列分析与事件特异性检测. 江苏农业学报, 2014,30(1):10-20.
[2] 许文涛, 杨蓉, 陆姣 , 等. 转基因玉米59122品系的特异性检测. 食品科学, 2011,32(4):139-142.
[3] 张广远, 孙红炜, 李凡 , 等. 转基因玉米MIR162转化事件特异性检测方法及其标准化. 作物学报, 2013,39(7):1141-1147.
doi: 10.3724/SP.J.1006.2013.01141
[4] 魏俊杰 . 转基因产品的检测方法. 河北农业科学, 2011,15(11):48-49,79.
[5] Made D, Degner C, Grohmann L . Detection of genetically modified rice:a construct-specific real-time PCR method based on DNA sequences from transgenic Bt rice. European Food Research and Technology, 2006,224(2):271-278.
doi: 10.1007/s00217-006-0467-x
[6] 金芜军, 郝旸, 程红梅 , 等. 用复合PCR方法对6种转基因玉米中的外源DNA进行特异性检测. 农业生物技术, 2005,13(5):562-567.
[7] Yang L T, Pan A H, Zhang K W , et al. Qualitative and quantitative PCR methods for event-specific detection of genetically modified cotton Mon1445 and Mon531. Transgenic Research, 2005,14:817-831.
doi: 10.1007/s11248-005-0010-z
[8] Wu G, Wu Y H, Xiao L , et al. Event-specific qualitative and quantitative PCR methods for the detection of genetically modified rapeseed Oxy-235. Transgenic Research, 2008,17:851-862.
doi: 10.1007/s11248-008-9168-5
[9] Pan A H, Yang L T, Xu S C , et al. Event-specific qualitative and quantitative PCR detection of MON863 maize based upon the 3'-transgene integration sequence. Cereal Science, 2006,43:250-257.
doi: 10.1016/j.jcs.2005.10.003
[10] Yang L T, Xu S C, Pan A H , et al. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence. Agricultural Food Chemistry, 2005,53:9312-9318.
doi: 10.1021/jf051782o
[11] Katarina C, Valérie C A, Marie-Noelle F , et al. Detection of nonauthorized genetically modified organisms using differential quantitative polymerase chain reaction:application to 35S in maize. Analytical Biochemistry, 2008,376:189-199.
doi: 10.1016/j.ab.2008.02.013
[12] Yang L T, Guo J C, Pan A H , et al. Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule. Agricultural Food Chemistry, 2007,55:15-24.
doi: 10.1021/jf0615754
[13] Sissel B R, Marc V, Knut G B , et al. Event specific real-time quantitative PCR for genetically modified Bt11 maize (Zea mays). European Food Research and Technology, 2003,216:347-354.
doi: 10.1007/s00217-002-0653-4
[14] Hari K S, Kae-Kang H, Wang S J , et al. Simultaneous detection of eight genetically modified maize lines using a combination of event and construct specific Multiplex-PCR technique. Agricultural Food Chemistry, 2008,56:8962-8968.
doi: 10.1021/jf800501z
[15] Tigst D, Indira R . Multiplex qualitative PCR assay for identification of genetically modified canola events and real-time event-specific PCR assay for quantification of the GT73 canola event. Food Control, 2008,19:893-897.
doi: 10.1016/j.foodcont.2007.08.020
[16] 颜静宛, 林琳, 王峰 . 获得基因侧翼序列位点信息的几种扩增方法. 福建农业学报, 2005,20(S1):125-129.
[17] 杨坤, 吴学龙, 朗春秀 , 等. 优化反向PCR法分离转基因油菜外源T-DNA侧翼序列的研究. 安徽农业科学, 2010,38(10):5002-5005.
[18] Liu Y G, Mitsukawa N, Oosumi T , et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant Journal, 1995,8:457-463.
doi: 10.1046/j.1365-313X.1995.08030457.x
[19] Liu Y G, Whittier R F . Thermal asymmetric interlaced PCR:Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995,25:674-681.
doi: 10.1016/0888-7543(95)80010-J
[20] Sessions A, Burke E, Presting G , et al. A High-through put reverse genetics system. Plant Cell, 2002,14:2985-2994.
doi: 10.1105/tpc.004630
[21] 郭金英, 张天真 . TAIL-PCR方法研究花粉管通道法转化机理粗探. 河北农业大学学报, 2010,33(4):5-9.
[22] Liu Y G, Chen Y L . High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques, 2007,43(5):649-654.
doi: 10.2144/000112601
[23] 徐荣旗, 汪佳妮, 陈捷胤 , 等. 棉花黄萎病菌T-DNA 插入突变体表型特征和侧翼序列分析. 中国农业科学, 2010,43(3):489-496.
[24] 侯娜, 贺辉群, 董美 , 等. 转基因抗虫棉外源DNA插入整合结构分析和转化体特异性检测方法的建立. 分子植物育种, 2012,10(3):317-323.
[25] Afolabi A S, Worland B, Snape J W , et al. A large-scale study of rice plant stransformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations. Theoretical and Applied Genetics, 2004,109:815-826.
doi: 10.1007/s00122-004-1692-y
[26] Tinland B . The integration of T-DNA into plant genomes.Trends in Plant Science, 1996(1):178-184.
[27] Krizkova L, Hrouda M . Direct repeats of T-DNA integratedin tobacco chromosome:characterization of junction regions. Plant Journal, 1998,16:673-680.
doi: 10.1046/j.1365-313x.1998.00330.x
[28] 李飞武, 李葱葱, 邢珍娟 , 等. 第二代抗草甘膦大豆PCR检测方法研究. 大豆科学, 2009,28(2):296-300.
[29] Berdal K G, Holst-Jensen A . Roundup ready soybean event-specific rea1-time quantitative PCR assay and estimation of the practical detection and quantification limits in GMO analyses. European Food Research and Technology, 2001,213(6):432-438.
doi: 10.1007/s002170100403
[30] Christer R N, Knut G B, Arne H J . Characterisation of the 5'-integration site and development of an event-specific real-time PCR assay for NK603 maize from a low starting copy number. European Food Research and Technology, 2004,219(4):421-427.
[31] 袁磊, 孙红炜, 杨崇良 , 等. 转基因玉米MON88017侧翼序列分析及定性 PCR检测. 作物学报, 2010,36(2):361-364.
doi: 10.3724/SP.J.1006.2010.00361
[32] 潘爱虎, 张大兵, 潘良文 , 等. 转基因抗草甘膦油菜的实用PCR检测方法. 中国农业科学, 2003,36(7):856-860.
[1] Lina Li,Longguo Jin,Chuanxiao Xie,Changlin Liu. Determining Blind Samples of Transgenic Maize and Transgenic Soybean [J]. Crops, 2017, 33(6): 37-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .