Crops ›› 2016, Vol. 32 ›› Issue (5): 1-7.doi: 10.16035/j.issn.1001-7283.2016.05.001

    Next Articles

Progress in Safety Assessment of Genetically Modified Crops

Jiao Yue,Liang Jingang,Zhai Yong   

  1. Development Center of Science and Technology,Ministry of Agriculture,Beijing 100122,China
  • Received:2016-06-20 Revised:2016-08-12 Online:2016-10-15 Published:2018-08-26
  • Contact: Yong Zhai

Abstract:

As the core of modern biotechnology, transgenic technology shows great potential in resolving food and resource scarcity, and environmental contamination. China and many countries in the world have formulated laws and regulations on the safety of genetically modified organisms (GMOs), in order to strengthen the administration of research, testing, processing, marketing, importing and exporting of GMOs. The main contents of safety assessment for transgenic plants in China, the general research progress of safety assessment around the world were reviewed, and the suggestions on safety assessment of transgenic crops in China were also proposed.

Key words: Transgenic crop, Agriculture, Safety assessment

Table 1

Classification of 1783 scientific records on genetically modified (GM) crop safety published between 2002 and 2012[6]"

主题Topic 文章数量
Paper number
百分比(%)
Proportion
转基因作物一般性文献 166 9.3
转基因作物对环境影响 847 47.5
生物多样性 579 32.5
基因漂移 268 15.0
对野生近缘种影响 113 6.3
对其他作物影响 96 5.4
对土壤微生物影响 59 3.3
转基因作物对人类和动物健康影响 770 43.2
实质等同原则 46 2.6
无目标方法评价 107 6.0
转基因食品和饲料食用安全性 312 17.5
可追溯性 305 17.1

Fig.1

Main topics of the scientific papers belonging to the GM environment group[6]"

Table 2

Separation distances for main GM crops[35]"

作物Crop 隔离距离(m)
Separation distance
备注Note
玉米Maize 300 或花期隔离25d以上
小麦Wheat 100 或花期隔离20d以上
大麦Barley 100 或花期隔离20d以上
芸薹属Brassica 1 000
棉花Cotton 150
水稻Rice 100 或花期隔离20d以上
大豆Soybean 100
番茄Tomato 100
烟草Tobacco 400
高粱Sorghum 500
马铃薯Potato 100
南瓜Pumpkin 700
苜蓿Alfalfa 300
黑麦草Ryegrass 300
辣椒Hot pepper 100

Fig.2

Main topics of the scientific papers belonging to the GM food and feed group[6]"

[1] 沈平, 章秋艳, 林友华 , 等. 推进我国转基因玉米产业化的思考. 中国生物工程杂志, 2016,36(4):24-29.
doi: 10.13523/j.cb.20160404
[2] Macnaghten P, Carro-Ripalda S , Burity J .A new approach to governing GM crops:global lessons from the rising powers.Durham University Working Paper, 2014, Durham,UK.
[3] Vain P . Trends in GM crop,food and feed safety literature. Nature Biotechnology, 2007,25:624-626.
doi: 10.1038/nbt0607-624b pmid: 17557092
[4] European Commission . A decade of EU-funded GMO research.[2010-06-18]..
[5] 刘华清, 李胜清, 陈浩 . 转基因作物安全评价及检测技术. 华中农业大学学报(社会科学版), 2010(6):14-19.
[6] Nicolia A, Manzo A, Veronesi F , et al. An overview of the last 10 years of genetically engineered crop safety research. Critical Reviews in Biotechnology, 2013,34:77-88.
doi: 10.3109/07388551.2013.823595 pmid: 24041244
[7] 农业部农业转基因生物安全管理办公室. 国外转基因知多少.北京: 中国农业出版社, 2015.
[8] Ramessar K, Capell T, Twyman R M , et al. Trace and traceability-a call for regulatory harmony. Nature Biotechnology, 2008,26:975-978.
doi: 10.1038/nbt0908-975 pmid: 18779799
[9] ABCA. The official Australian reference guide to agricultural biotechnology and GM crops (2nd edition). The Agricultural Biotechnology Council of Australia ( ABCA), 2015.
[10] Kostov K, Krogh P H, Damgaard C F , et al. Are soil microbial endpoints changed by Bt crops compared with conventional crops? A systematic review protocol. Environmental Evidence, 2014,3:11.
doi: 10.1186/2047-2382-3-11
[11] Liang J, Sun S, Ji J , et al. Comparison of the rhizosphere bacterial communities of Zigongdongdou soybean and a high-methionine transgenic line of this cultivar. PLoS One, 2014,9:e103343.
doi: 10.1371/journal.pone.0103343
[12] Liang J, Meng F, Sun S , et al. Community structure of arbuscular mycorrhizal fungi in rhizospheric soil of a transgenic high-methionine soybean and a near isogenic variety, PLoS One, 2015,10:e0145001.
doi: 10.1371/journal.pone.0145001
[13] Liang J, Xin L, Meng F , et al.High-methionine soybean has no adverse effect on functional diversity of rhizosphere microorganisms.Plant, Soil and Environment, 2016 ( accepted).
[14] Wu J, Yu M, Xu J , et al. Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil. PLoS One, 2014,9:e98394.
doi: 10.1371/journal.pone.0098394
[15] Zhang Y, Xie M, Peng D . Effects of the transgenic CrylAc and CpTI insect-resistant cotton SGK321 on rhizosphere soil microorganism populations in northern China.Plant, Soil and Environment, 2014,60:285-289.
doi: 10.17221/PSE
[16] Li Y, Zhang X, Chen X , et al. Consumption of Bt rice pollen containing Cry1C or Cry2A does not pose a risk to Propylea japonica (Thunberg) (Coleoptera:Coccinellidae). Scientific Reports, 2015,5:7679.
doi: 10.1038/srep07679
[17] Emani C. The effects of transgenic crops on non-target organisms.Biotechnology and Biodiversity, Springer International Publishing, 2014: 59-66.
[18] de Castro T R, Ausique J J S, Nunes D H , et al. Risk assessment of cry toxins of Bacillus thuringiensis on the predatory mites Euseius concordis and Neoseiulus californicus (Acari:Phytoseiidae). Experimental and Applied Acarology, 2013,59:421-433.
doi: 10.1007/s10493-012-9620-3
[19] Baxter S W , Badenes-Pérez F R,Morrison A,et al.Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics, 2011,189:675-679.
doi: 10.1534/genetics.111.130971
[20] Shaner D L, Lindenmeyer R B, Ostlie M H . What have the mechanisms of resistance to glyphosate taught us? Pest Management Science, 2012,68:3-9.
doi: 10.1002/ps.2261 pmid: 21842528
[21] 朱家林, 贺娟, 牛建群 , 等. 风向因素对转基因抗虫棉花基因漂移效率的影响. 生态学报, 2013,33(21):6803-6812.
doi: 10.5846/stxb201207040932
[22] Mertens M.Assessment of environmental impacts of genetically modified plants.Implementation of the Biosafety Protocol Development of Assessment Bases, 2008, FKZ 20167430/07.
[23] Wang K, Li X . Pollen dispersal of cultivated soybean into wild soybean under natural conditions. Crop Science, 2013,53:2497-2505.
doi: 10.2135/cropsci2012.07.0423
[24] Wang K, Li X . Synchronous evidence from both phenotypic and molecular signatures for the natural occurrence of sympatric hybridization between cultivated soybean (Glycine max) and its wild progenitor (G.soja). Genetic Resources and Crop Evolution, 2014,61:235-246.
doi: 10.1007/s10722-013-0030-0
[25] 卢宝荣, 戎俊 . 转基因水稻的外源基因逃逸及其环境安全.北京: 中国环境科学出版社, 2006: 101-109.
[26] Chun Y, Kim D, Park K , et al. Gene flow from herbicide-tolerant GM rice and the heterosis of GM rice-weed F2 progeny. Planta, 2011,233:807-815.
doi: 10.1007/s00425-010-1339-y pmid: 21212977
[27] Zuo J, Zhang L, Song X , et al. Innate factors causing differences in gene flow frequency from transgenic rice to different weedy rice biotypes. Pest Management Science, 2011,67:677-690.
doi: 10.1002/ps.v67.6
[28] Wang F, Yuan Q H, Shi L , et al. A large-scale field study of transgene flow from cultivated rice (Oryza sativa) to common wild rice (O.rufipogon) and barnyard grass (Echinochloa crusgalli). Plant Biotechnology Journal, 2006,4:667-676.
doi: 10.1111/pbi.2006.4.issue-6
[29] Xia H, Lu B R, Xu K , et al. Enhanced yield performance of Bt rice under target-insect attacks:implications for field insect management. Transgenic Research, 2011,20:655-664.
doi: 10.1007/s11248-010-9449-7
[30] Yang X, Xia H, Wang W , et al. Transgenes for insect resistance reduce herbivory and enhance fecundity in advanced generations of crop-weed hybrids of rice. Evolutionary Applications, 2011,4:672-684.
doi: 10.1111/eva.2011.4.issue-5
[31] 李宁, 何康来, 崔蕾 , 等. 转基因抗虫玉米环境安全性及我国应用前景. 植物保护, 2011,37(6):18-26.
doi: 10.3969/j.issn.0529-1542.2011.06.003
[32] Kwit C, Moon H S, Warwick S I , et al. Transgene introgression in crop relatives:molecular evidence and mitigation strategies. Trends in Biotechnology, 2011,29:284-293.
doi: 10.1016/j.tibtech.2011.02.003 pmid: 21388698
[33] Hu N, Hu J, Jiang X , et al. Establishment and optimization of a regionally applicable maize gene-flow model. Transgenic Research, 2014,23:795-807.
doi: 10.1007/s11248-014-9810-3 pmid: 24962816
[34] 丁伟, 王振华, 李新海 . 转基因抗除草剂大豆的效益、潜在风险及其环境安全性评价. 作物杂志, 2010(6):15-19.
[35] 寇建平 . 农业转基因生物知识100问.2版.北京: 中国农业出版社, 2014.
[36] Meier P, Wackernagel W . Monitoring the spread of recombinant DNA from field plots with transgenic sugar beet plants by PCR and natural transformation of Pseudomonas stutzeri. Transgenic Research, 2003,12:293-304.
doi: 10.1023/A:1023317104119
[37] Organisation for Economic Co-operation and Development (OECD).Safety Evaluation of Foods Derived by Modern Biotechnology: Concepts and Principles.OECD, 1993.
doi: 10.1057/9780230271326_10
[38] EFSA. Guidance for risk assessment of food and feed from genetically modified plants. EFSA Journal, 2011,9:2150.
doi: 10.2903/j.efsa.2011.2150
[39] 武小霞, 彬彬, 王志坤 , 等. 转基因作物的生物安全性管理及安全评价. 作物杂志, 2010(4):1-4.
doi: 10.3969/j.issn.1001-7283.2010.04.001
[40] Bøhn T, Cuhra M, Traavik T , et al. Compositional differences in soybeans on the market:glyphosate accumulates in roundup ready GM soybeans. Food Chemistry, 2014,153:207-215.
doi: 10.1016/j.foodchem.2013.12.054
[41] 农业部农业转基因生物安全管理办公室. 转基因安全评价指南, 2010.
[42] Conko G, Kershen D L, Miller H , et al. A risk-based approach to the regulation of genetically engineered organisms. Nature Biotechnology, 2016,34(5):493-503.
doi: 10.1038/nbt.3568 pmid: 27153279
[1] Yue Jiao,Wei Fu,Yong Zhai. Application of RNAi in Crop Breeding and Its Safety Assessment [J]. Crops, 2018, 34(1): 9-15.
[2] Shixin Cui,Mingshou Fan,Liguo Jia,Yonglin Qin,Yang Chen,Yufen Wang. Progress of Field Rain-Harvesting Technology and Its Use Potential in Arid Potato Production [J]. Crops, 2016, 32(5): 8-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .