Crops ›› 2019, Vol. 35 ›› Issue (4): 100-106.doi: 10.16035/j.issn.1001-7283.2019.04.015

Previous Articles     Next Articles

Effects of Nitrogen Application Rate and Planting Density Interaction on Photosynthetic Characteristics and Root Yield of Sugar Beet under Full-Film Mulching in Arid Regions

Yan Wei,Li Guolong,Li Zhi,Cao Yang,Zhang Shaoying   

  1. Sugar Beet Physiological Institute, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
  • Received:2018-11-16 Revised:2019-04-15 Online:2019-08-15 Published:2019-08-06
  • Contact: Shaoying Zhang

Abstract:

Full-film mulching has the advantages of increasing temperature, preserving moisture and suppressing grass, and it is an effective measure for dryland farming. Herein, a two-factor split-plot design was used to explore suitable nitrogen application and planting densities of sugar beet under full-film conditions in arid regions. Comparative study on photosynthetic characteristics and yields under full-film mulching condition through different combinations of nitrogen application rates and planting densities showed that nitrogen supply and planting density had significant effects on photosynthetic characteristics of sugar beet under full-film conditions under dry conditions. The suitable nitrogen and density were beneficial to SPAD value, LAI (leaf area index), net photosynthetic rate (Pn), the accumulation of dry matter per plant, T/R, and yields of beet. In addition, SPAD value, LAI, Pn, T/R, and dry matter accumulation per plant were positively correlated with yields. During the increasing stage of sugar beet root, the maximum yields could be obtained when the SPAD value and LAI of sugar beet were controlled at 53.8 and 4.5, respectively. The regression equation of density (X1) and nitrogen application (X2) with yields (Y) was obtained by binomial regression analysis. The maximum yields of sugar beets could be obtained when the density was 93 500 plant/hm 2 and the nitrogen application rate was 128.8kg/hm 2.

Key words: Dry farming, Sugar beet, Full-film mulching, Interaction of nitrogen fertilizer and planting density, Photosynthetic characteristics, Yield

Table 1

Split-plot design about planting density and nitrogen application rate in sugar beet"

处理Treatment 行距Row spacing (cm) 株距Plant spacing (cm) 种植密度Planting density (万株/hm2) 施氮量Nitrogen application rate (kg/hm2)
D1N1 50 26 7.7 60
D2N1 50 22 9.1 60
D3N1 50 18 10.6 60
D1N2 50 26 7.7 120
D2N2 50 22 9.1 120
D3N2 50 18 10.6 120
D1N3 50 26 7.7 180
D2N3 50 22 9.1 180
D3N3 50 18 10.6 180

"

处理
Treatment
苗期
Seedling stage
叶丛快速生长期
Fast growth stage of leaf
块根糖分增长期
Sugar increasing stage of root
糖分积累期
Period of sugar accumulation
D1N1 0.17eD 1.51dE 3.74deC 3.48cdD
D2N1 0.24cdBCD 1.53dDE 3.87deC 3.52cCD
D3N1 0.29bcBC 1.62cC 3.64eC 3.40dDE
D1N2 0.22deCD 1.63cC 3.86deC 3.69abAB
D2N2 0.27bcdBC 1.74bB 4.51cB 3.77aA
D3N2 0.31bBC 1.97aA 4.95abA 3.28eE
D1N3 0.29bcBC 1.45eE 3.95dC 3.64bBC
D2N3 0.33bB 1.61cCD 4.78bAB 3.66bAB
D3N3 0.45aA 1.78bB 5.05aA 3.15fF
F值F-value D 38.77** 132.47** 74.54** 148.28**
N 18.65** 330.10** 363.97** 9.97*
D×N 1.61 11.90** 22.26** 18.94**

Table 3

Effects of nitrogen application rates and planting densities on SPAD value of sugar beet under full-film mulching in arid regions"

处理
Treatment
苗期
Seedling stage
叶丛快速生长期
Fast growth stage of leaves
块根糖分增长期
Sugar increasing stage of root
糖分积累期
Period of sugar accumulation
D1N1 56.6bB 52.5cC 53.6bB 46.3cBC
D2N1 52.8dC 48.1eE 52.4cCD 45.3deCD
D3N1 46.8gE 42.8hH 47.9fF 41.5gF
D1N2 58.5aA 55.9aA 55.1aA 48.3aA
D2N2 55.5cB 53.8bB 53.8bB 47.2bAB
D3N2 51.7eC 50.7dD 52.7cBC 45.4dCD
D1N3 55.5cB 46.7fF 52.4cCD 45.5dCD
D2N3 52.0deC 44.8gG 51.4dD 44.5eDE
D3N3 49.4fD 45.1gG 50.0eE 43.5fE
F值F-value D 486.64** 513.03** 140.08** 117.81**
N 157.63** 309.11** 159.70** 1 107.88**
D×N 12.82** 100.32** 17.59** 10.09**

Table 4

Effects of nitrogen application rates and planting densities on Pn of sugar beet under full-film mulching in arid regions μmol/(m2·s)"

处理
Treatment
苗期
Seedling stage
叶丛快速生长期
Fast growth stage of leaves
块根糖分增长期
Sugar increasing stage of root
糖分积累期
Period of sugar accumulation
D1N1 27.5bB 21.6aAB 22.0bcBC 21.4cC
D2N1 24.1cdDE 19.3cC 21.3dCD 20.4dD
D3N1 22.3eE 17.8dD 19.3fE 19.6efDE
D1N2 29.4aA 21.9aA 24.0aA 24.6aA
D2N2 26.7bBC 20.6bBC 22.6bB 22.8bB
D3N2 25.0cCD 19.4cC 21.5cdC 20.1deD
D1N3 26.7bBC 17.9dD 22.7bB 21.6cC
D2N3 24.6cdD 16.6eDE 20.4eD 18.9fE
D3N3 23.7Dde 16.2eE 17.9gF 17.7gF
F值F-value D 82.30** 61.47** 179.01** 188.93**
N 44.59** 43.77** 62.39** 413.16**
D×N 1.87 3.40* 9.75** 13.69**

Table 5

Effects of nitrogen application rates and planting densities on dry matter accumulation per plant of sugar beet under full-film mulching in arid regions g"

处理
Treatment
苗期
Seedling stage
叶丛快速生长期
Fast growth stage of leaves
块根糖分增长期
Sugar increasing stage of root
糖分积累期
Period of sugar accumulation
D1N1 0.94deD 40.76deCDE 153.55cC 239.19cC
D2N1 0.73fE 39.50fgEF 132.24fF 221.92eD
D3N1 0.64gE 38.88gF 114.69hH 185.41gF
D1N2 1.27bB 43.04bB 165.63bB 258.13bB
D2N2 0.97dCD 45.33aA 155.61cC 238.91cC
D3N2 0.86eD 41.50cdCD 138.02eE 222.35eD
D1N3 1.41aA 44.67aA 173.93aA 274.20aA
D2N3 1.08cC 42.10bcBC 147.19dD 236.44dD
D3N3 0.91deD 40.33efDEF 118.73gG 202.73fE
F值F-value D 170.54** 52.33** 1 428.61** 4 316.36**
N 142.24** 110.45** 2 025.21** 554.58**
D×N 3.17 17.49** 58.81** 472.02**

Table 6

Effects of nitrogen application rates and planting densities on T/R (dry matter) of sugar beet under full-film mulching in arid regions"

处理
Treatment
苗期
Seedling stage
叶丛快速生长期
Fast growth stage of leaves
块根糖分增长期
Sugar increasing stage of root
糖分积累期
Period of sugar accumulation
D1N1 0.121cB 0.480bcBC 1.289bB 1.504eE
D2N1 0.112dC 0.458deCDE 1.189dD 1.425fF
D3N1 0.107eD 0.443efDE 1.160eDE 1.367gG
D1N2 0.131aA 0.508aA 1.396aA 1.894aA
D2N2 0.124bB 0.490bAB 1.235cC 1.744bB
D3N2 0.111dC 0.466cdCD 1.195dD 1.688cC
D1N3 0.112dC 0.494abAB 1.188dD 1.764bB
D2N3 0.101fE 0.441fE 1.156eDE 1.587dD
D3N3 0.093gF 0.419gF 1.126fE 1.452fEF
F值F-value D 334.76** 78.44** 164.85** 234.51**
N 787.94** 124.95** 236.04** 555.28**
D×N 7.64** 5.40* 17.76** 13.14**

Fig.1

Effects of nitrogen application rate and planting densities on yield of sugar beet under full-film mulching in arid regions"

Table 7

Correlation between nitrogen application rate (N2) and planting densities (D2), and photosynthetic indexes and accumulation and distribution of matter of sugar beet under full-film mulching in arid regions (the sugar increasing stage of root)"

处理
Treatment
叶面积指数
LAI
SPAD值
SPAD value
Pn 单株干物质积累量
Dry matter accumulation per plant
根冠比
Root/Shoot ratio
产量
Yield
密度Planting density 0.935** -0.995** -0.990** -0.996** -0.954** 0.629*
施氮量Nitrogen application rate 0.893** 0.324 0.361 0.667** 0.532* 0.678*

Table 8

Correlation between photosynthetic characteristics and yield during the sugar increasing stage of root"

指标 Index 叶面积指数
LAI
SPAD值
SPAD value
Pn 单株干物质积累量
Dry matter accumulation per plant
根冠比
Root/Shoot ratio
产量
Yield
叶面积指数LAI -1
SPAD值SPAD value -0.018 1
Pn -0.231 0.940** 1
单株干物质积累量Dry matter accumulation per plant -0.057 0.729* 0.779* 1
根冠比Root/Shoot ratio -0.075 0.875** 0.912** 0.823** 1
产量Yield -0.729** 0.292 0.186 0.091 0.318 1
[1] 刘蒙 . 旱作甜菜密度与施肥优化栽培技术研究. 呼和浩特:内蒙古农业大学, 2015.
[2] 李阳阳, 费聪, 崔静 , 等. 滴灌甜菜对糖分积累期水分亏缺的生理响应. 中国生态农业学报, 2017,25(3):373-380.
[3] 王瑗, 盛连喜, 李科 , 等. 中国水资源现状分析与可持续发展对策研究. 水资源与水工程学报, 2008(3):10-14.
[4] 唐小明, 李尚中, 樊廷录 , 等. 不同覆膜方式对旱地玉米生长发育和产量的影响. 玉米科学, 2011,19(4):103-107.
[5] 李尚中, 王勇, 樊廷录 , 等. 旱地玉米不同覆膜方式的水温及增产效应. 中国农业科学, 2010,43(5):922-931.
[6] 杨长刚, 柴守玺, 常磊 , 等. 不同覆膜方式对旱作冬小麦耗水特性及籽粒产量的影响. 中国农业科学, 2015,48(4):661-671.
[7] 何进勤, 雷金银, 冒辛 , 等. 马铃薯覆膜方式对土壤氮磷钾养分与产量的影响. 中国土壤与肥料, 2017(2):35-41.
[8] 苏欣, 缴锡云, 翟铎 , 等. 黑龙港流域不同栽培方式下棉花蒸发量及产量试验研究. 节水灌溉, 2012(5):47-49.
[9] 张瑞喜, 史吉刚, 宋日权 , 等. 覆膜滴灌对玉米生长及苗期土壤温度的试验研究. 节水灌溉, 2016(9):98-101.
[10] 侯慧芝, 吕军峰, 郭天文 , 等. 全膜覆土栽培对作物的水温效应. 麦类作物学报, 2012,32(6):1111-1117.
doi: 10.7606/j.issn.1009-1041.2012.06.018
[11] 王俊, 李凤民, 宋秋华 , 等. 地膜覆盖对土壤水温和春小麦产量形成的影响. 应用生态学报, 2003(2):205-210.
[12] 李世清, 李东方, 李凤民 , 等. 半干旱农田生态系统地膜覆盖的土壤生态效应. 西北农林科技大学学报(自然科学版), 2003(5):21-29.
[13] Xue N W, Xue J F, Yang Z P , et al. Effects of film mulching regime on soil water status and grain yield of rain-fed winter wheat on the Loess Plateau of China. Journal of Integrative Agriculture, 2017,16(11):2612-2622.
[14] Gao Y H, Xie Y P, Jiang H Y , et al. Soil water status and root distribution across the rooting zone in maize with plastic film mulching. Field Crops Research, 2014,156:40-47.
[15] 巨晓棠 . 氮肥有效率的概念及意义——兼论对传统氮肥利用率的理解误区. 土壤学报, 2014,51(5):921-933.
[16] Sotiropoulou D E, Karamanos A J . Field studies of nitrogen application on growth and yield of Greek oregano (Origanum vulgare ssp. hirtum (Link) Ietswaart). Industrial Crops & Products, 2010,32(3):450-457.
[17] 杨罗锦, 陶洪斌, 王璞 . 种植密度对不同株型玉米生长及根系形态特征的影响. 应用与环境生物学报, 2012,18(6):1009-1013.
[18] 王秀斌, 徐新朋, 孙刚 , 等. 氮肥用量对双季稻产量和氮肥利用率的影响. 植物营养与肥料学报, 2013,19(6):1279-1286.
doi: 10.11674/zwyf.2013.0601
[19] 邹序安, 远红伟, 陆引罡 . 肥料运筹和覆膜对小麦营养特征及产量品质的影响. 西北农业学报, 2009,18(2):70-73,87.
[20] 张建军, 樊廷录, 党翼 , 等. 密度与氮肥运筹对陇东旱塬全膜双垄沟播春玉米产量及生理指标的影响. 中国农业科学, 2015,48(22):4574-4584.
[21] 梁锦秀, 郭鑫年, 张国辉 , 等. 覆膜和密度对宁南旱地马铃薯产量及水分利用效率的影响. 水土保持研究, 2015,22(5):266-270.
[22] 闫慧颖, 李春喜, 叶培麟 , 等. 种植密度和施肥水平对青海旱地覆膜种植甜高粱草产量及品质的影响. 草业科学, 2017,34(12):2512-2520.
[23] 师日鹏, 上官宇先, 马巧荣 , 等. 密度与氮肥配合对垄沟覆膜栽培冬小麦干物质累积及产量的影响. 植物营养与肥料学报, 2011,17(4):823-830.
doi: 10.11674/zwyf.2011.0537
[24] 范志廷 . 辽西北半干旱区旱作甜菜关键栽培技术集成. 现代农业, 2013(1):44.
[25] 王树林, 张瑞枝, 李洁 , 等. 发展旱作甜菜生产. 中国甜菜糖业, 2001(4):44-49.
[26] 中华人民共和国国家质量监督检验检疫总局. GB/T 10496-2002糖料甜菜, 2002.
[27] 田丰, 张永成, 张凤军 , 等. 不同肥料和密度对马铃薯光合特性和产量的影响. 西北农业学报, 2010,19(6):95-98.
[28] 邓中华, 明日, 李小坤 , 等. 不同密度和氮肥用量对水稻产量、构成因子及氮肥利用率的影响. 土壤, 2015,47(1):20-25.
[29] 孙云岭, 杨树青, 刘德平 , 等. 水肥互作对大豆产量及氮肥利用的影响. 灌溉排水学报, 2018,37(10):81-86.
[30] 杜永成 . 氮磷钾肥施用量对甜菜光合能力和氮代谢酶的影响. 哈尔滨:东北农业大学, 2012.
[31] 范文婷 . 氮磷钾肥施用量对黑龙江省不同生态区甜菜产质量的影响. 哈尔滨:东北农业大学, 2012.
[32] 白晓山 . 不同种植方式、密度和施肥量对甜菜产量及含糖率的影响. 乌鲁木齐:新疆农业大学, 2014.
[33] 余少波, 王志刚, 高聚林 , 等. 玉米单交种光合生产能力杂种优势对氮肥的响应. 玉米科学, 2016,24(5):26-32.
[1] Wan Xiaoju,Zhang Guoqiang,Wang Keru,Xie Ruizhi,Shen Dongping,Chen Jianglu,Liu Chaowei,Li Shaokun. Effects of Plastic Film Mulching and Drip Irrigation on Spring Maize in Northern Xinjiang [J]. Crops, 2019, 35(4): 107-112.
[2] Qi Deqiang,Zhao Jingjing,Feng Naijie,Zheng Dianfeng,Liang Xiaoyan. Effects of S3307 and DTA-6 on Sugar Metabolism and Yield of Potato Leaves and Tubers [J]. Crops, 2019, 35(4): 148-153.
[3] Abudukadier Kuerban,Xia Dong,Zhang Jusong,Cui Jianping,Guo Rensong,Lin Tao. Effects of Drip Irrigation Frequency on Yield and Quality of Chemical Defoliated Cotton [J]. Crops, 2019, 35(4): 113-119.
[4] Huang Wan,Li Chenxi,Tan Xueming,Zeng Yongjun,Wu Ziming,Liu Taoju,Shi Qinghua,Pan Xiaohua,Zeng Yanhua. Effects of Different Direct Seeding Methods on Growth and Development Characteristics and Yield of Late-Rice [J]. Crops, 2019, 35(4): 159-163.
[5] Wang Jian,Yao Dandan,Hao Ruxue,Yu Qingsong,Han Jinling,Zhou Yinfu,Wang Wenpo. Grain Filling Characteristics of Nine Main Spring Corn Varieties in Eastern Hebei Province [J]. Crops, 2019, 35(4): 120-124.
[6] Zhou Yun,Li Yongmei,Fan Maopan,Wang Zilin,Xu Zhi,Zhang Dan,Zhao Jixia. Effects of Nitrogen in Organic Manure Replacing Chemical Nitrogenous Fertilizer on Aggregates of Red Soil, Maize Yield and Quality [J]. Crops, 2019, 35(4): 125-132.
[7] Liang Junmei,Zhang Jun,An Hao,Jing Yupeng,Li Huanchun,Duan Yu. Effects of Recommended Fertilization by Management Nutrition Expert System on Potato Yield and Fertilizer Use Efficiency [J]. Crops, 2019, 35(4): 133-138.
[8] Gu Jiaojiao,Hu Bowen,Jia Yan,Sha Hanjing,Li Jingwei,Ma Chao,Zhao Hongwei. Effects of Salt Stress on Root Related Traits and Yield of Rice [J]. Crops, 2019, 35(4): 176-182.
[9] Gao Jie,Li Qingfeng,Li Xiaorong,Feng Guangcai,Peng Qiu. Variation Analysis of Agronomic Traits of Waxy Sorghum Varieties (Lines) in Different Eras in Guizhou Province [J]. Crops, 2019, 35(4): 17-23.
[10] Zhang Haibin,Meng Meilian,Liu Kunyu,Zhang Lingxiang,Chen Youjun. Effects of Different Rotation Patterns on Dry Matter Accumulation, Disease Occurrence and Yield of Potato [J]. Crops, 2019, 35(4): 170-175.
[11] Gong Dan,Pan Xiaowei,Wang Suhua,Wang Lixia,Cheng Xuzhen. Multi-Loci Identifications on New Varieties (Lines) of Mungbean from China Agriculture Research System on Food Legume [J]. Crops, 2019, 35(4): 30-36.
[12] Zhang Suyu,Huang Jie,Yang Mingda,Ma Shouchen,Wang Hezhou,Li Xiangdong,Yang Cheng,Zhang Deqi,Fang Baoting. Effects of Base-Topdressing Ratio of Nitrogen Fertilizer and Regulated Deficit Irrigation on Water Use Efficiency and Yield of Wheat [J]. Crops, 2019, 35(4): 94-99.
[13] Zhang Meng,Gou Jiulan,Wei Quanquan,Chen Long,He Jiafang. Effects of Different Biological Organic Fertilizers on the Growth of Spring Potato and Soil Fertility at High Altitude Region in Guizhou Province [J]. Crops, 2019, 35(3): 132-136.
[14] Quan Baoquan,Lü Ruizhou,Wang Guijiang,Ren Jiecheng. Effects of Different Cultivation Measures during Vegetative Propagation on Growth and Yield of Sweet Potato [J]. Crops, 2019, 35(3): 158-161.
[15] Wang Yonggang,Ji Mingze,Zhao Xuhan,Yu Lihe,Xue Yingwen. Effects of Sowing Dates on Yield of Baiyan 7 in Midwest of Heilongjiang Province [J]. Crops, 2019, 35(3): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[2] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[3] . [J]. Crops, 2014, 30(1): 158 .
[4] . [J]. Crops, 1997, 13(4): 38 .
[5] . [J]. Crops, 1996, 12(5): 11 .
[6] . [J]. Crops, 1995, 11(3): 28 -29 .
[7] . [J]. Crops, 1995, 11(3): 13 .
[8] . [J]. Crops, 1994, 10(1): 3 -4 .
[9] . [J]. Crops, 1995, 11(4): 22 .
[10] . [J]. Crops, 1990, 6(2): 13 -14 .