Crops ›› 2020, Vol. 36 ›› Issue (3): 60-65.doi: 10.16035/j.issn.1001-7283.2020.03.010

Previous Articles     Next Articles

Analysis of Genetic Diversity and Establishment of Molecular ID of the Wheat Cultivars Registered in Qinghai Using SSR

Li Hongqin1,2, Liu Baolong2, Zhang Bo2, Zhang Huaigang2()   

  1. 1Life Science College, Luoyang Normal University, Luoyang 471934, Henan, China
    2Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, China
  • Received:2019-11-01 Revised:2019-12-11 Online:2020-06-15 Published:2020-06-10
  • Contact: Huaigang Zhang E-mail:hgzhang@nwipb.cas.cn

Abstract:

Wheat is an important grain crop in Qinghai province. In order to provide theoretical basis for wheat breeding and resource protection, 212 SSR primers with clear amplification bands were used to reveal the genetic diversity of 66 wheat cultivars registered in Qinghai Province. The results showed that 19 primers had only one amplification band and 193 primers had more than one amplification band. Seven hundred and twenty-four alleles were detected and the average alleles per locus varied from 2 to 10. The polymorphism information content (PIC) values ranged from 0.03 to 0.86 with an average value of 0.51. Both the average allelic richness (Rs) and the Nei’s genetic diversity index (He) for the three sub-genomes of the common wheat were A > B > D. Out of the 7 homologous groups in wheat, the second homologous group had the highest diversity and the seventh homologous group had the lowest diversity. The 66 wheat cultivars can be distinguished by 23 pairs SSR primers which can be used to establish a set of molecular ID and as reference to identify wheat cultivars in Qinghai province.

Key words: Qinghai province, Wheat, SSR, Genetic diversity, Molecular ID

Fig.1

Number and frequency of the amplified alleles by all the primers"

Table 1

Genetic diversity comparison of the three wheat genomes (A, B, D) and seven homologous groups"

基因组和同源群
Genome and group
检测位点数
Numbers of loci
等位变异数
Number of allelic variance (Na)
平均等位变异丰富度
Average allelic richness (Rs)
平均遗传多样性指数
Average Nei’s genetic diversity index (He)
A 77 295 3.83 0.50
B 68 236 3.47 0.45
D 67 212 3.16 0.43
1 34 126 3.71 0.47
2 29 115 3.97 0.51
3 27 91 3.37 0.51
4 29 104 3.59 0.44
5 34 114 3.35 0.42
6 30 103 3.43 0.48
7 29 90 3.10 0.41

Table 2

Molecular ID of the wheat varieties used in the experiment"

品种Variety 特异性指数Specific index 分子身份证Molecular ID 品种Variety 特异性指数Specific index 分子身份证Molecular ID
青春37
Qingchun 37
1 196.594 38577572724636631433461 互麦15
Humai 15
766.173 33372644745343624454534
青春38
Qingchun 38
905.187 65566646751673433652522 民和853
Minhe 853
614.893 10122574474457366312604
青春39
Qingchun 39
959.709 67387732764633624446163 民和588
Minhe 588
601.365 10126567424657366513403
青春533
Qingchun 533
565.134 68123777555643624133333 民和665
Minhe 665
539.725 10222374475457366312654
青春144
Qingchun 144
707.629 68523727555643663133333 乐麦6号
Lemai 6
554.626 67263776355543161333635
青春254
Qingchun 254
910.860 88843674752674264654563 乐麦5号
Lemai 5
641.418 42223544343573363241635
青春415
Qingchun 415
873.968 54287345744673266255533 阿勃
Abo
648.117 42223544343573363241633
青春570
Qingchun 570
676.763 84871645755613243624462 青农469
Qingnong 469
846.373 10526167554412322463622
青春587
Qingchun 587
735.981 68113777754643625336232 新哲9号
Xinzhe 9
839.659 86882314725775262253633
青春891
Qingchun 891
632.076 64523727755643163133333 香农3号
Xiangnong 3
659.054 86884175725773364243633
青春952
Qingchun 952
666.277 62123724565643664143343 柴春018
Chaichun 018
819.849 92765875377733332244635
高原506
Gaoyuan 506
624.259 85477552737653133655032 柴春044
Chaichun 044
784.364 51152253124453513366133
高原602
Gaoyuan 602
685.488 55334673745773663624442 柴春236
Chaichun 236
567.181 66123574354573634436534
高原466
Gaoyuan 466
728.154 46224583742773733241452 柴春901
Chaichun 901
734.429 85352575354753632456553
高原465
Gaoyuan 465
667.475 45224584747773721245452 瀚海304
Hanhai 304
777.519 41162254134456513366133
高原356
Gaoyuan 356
926.180 85888474357547624625552 山旱901
Shanhan 901
782.421 86227075334573662126652
高原205
Gaoyuan 205
1 016.320 65877772746374423155306 墨波
Mobo
737.970 85461572354233264416553
高原v028
Gaoyuan v028
880.516 32867351344317663626436 墨引1号
Moyin 1
703.267 61562674454453412326533
高原175
Gaoyuan 175
683.493 66223455547573623435445 墨引2号
Moyin 2
1 035.730 31562376454453611326533
高原182
Gaoyuan 182
783.001 86632554247743633645024 宁春26
Ningchun 26
786.588 10635165764422146431665
高原913
Gaoyuan 913
738.898 85463454556573223624063 张春811
Zhangchun 811
620.903 56862174754754644423552
高原314
Gaoyuan 314
654.983 57232773746777664414452 甘春20号
Ganchun 20
920.703 32457572653273424241553
高原363
Gaoyuan 363
654.621 65427474546373634624063 通麦1号
Tongmai 1
691.507 67523366114452634136533
高原584
Gaoyuan 584
1 250.777 87261384747127224535256 曹选5号
Caoxuan 5
805.737 15162676324724612666133
高原932
Gaoyuan 932
654.295 67162275357223423655443 东春1号
Dongchun 1
838.556 74865176754742632532041
高原448
Gaoyuan 448
642.058 10782377445554362432355 兰天3号
Lantian 3
905.162 59325776745771623143656
高原115
Gaoyuan 115
849.515 86252586554713633316532 源桌3号
Yuanzhuo 3
677.957 32472566735773634444554
高原158
Gaoyuan 158
746.359 33227756657473423645354 高原671
Gaoyuan 671
1 215.348 58173335441664655442412
互助红
Huzhuhong
1 124.571 24463464115432652432021 青农524
Qingnong 524
732.190 57822576457771424655044
互麦11
Humai 11
697.367 72365574726553663634142 高原142
Gaoyuan 142
815.518 39367254544353613526556
互麦12
Humai 12
874.147 24463764114471653422522 高原412
Gaoyuan 412
621.936 66835676646774623624642
互麦13
Humai 13
900.949 24465374114534642432151 高原338
Gaoyuan 338
665.662 66372676434773434454554
互麦14
Humai 14
596.186 67863746246543624135433 高原437
Gaoyuan 437
790.310 66835676646774623624602
[1] 赵俊彪, 姬虎太, 赵玉山 , 等. 小麦品种纯度现代鉴定技术的应用. 小麦研究, 2002,23(2):6-7.
[2] Sajjad M, Khan S H, Shahzad M . Patterns of allelic diversity in spring wheat populations by SSR-markers. Cytology and Genetics, 2018,52(2):155-160.
doi: 10.3103/S0095452718020081
[3] 胡景涛, 严明建, 黄成志 , 等. SSR标记在杂交水稻亲本技术鉴定中的应用. 作物杂志, 2014(6):61-64.
[4] 辛景树, 郭景伦, 张软斌 . 几种常用分子标记技术在种子纯度和品种真实性鉴定方面的比较与分析. 种子, 2005,24(1):58-60.
[5] 陆徐忠, 倪金龙, 李莉 , 等. 利用SSR分子指纹和商品信息构建水稻品种身份证. 作物学报, 2014,40(5):823-829.
doi: 10.3724/SP.J.1006.2014.00823
[6] 马琳, 刘海珍, 陆徐忠 , 等. 130份甘蓝型油菜种质分子身份证的构建. 中国油料作物学报, 2013,35(3):231-239.
doi: 10.7505/j.issn.1007-9084.2013.03.001
[7] 陈亮, 郑宇宏, 范旭红 , 等. 吉林省新育成大豆品种SSR指纹图谱身份证的构建. 大豆科学, 2016,35(6):896-901.
[8] 陈昌文, 曹珂, 王力荣 , 等. 中国桃主要品种资源及其野生近缘种的分子身份证构建. 中国农业科学, 2011,44(10):2081-2093.
doi: 10.3864/j.issn.0578-1752.2011.10.013
[9] 王慧玲, 闫爱玲, 孙磊 , 等. 13个中国葡萄优新品种的分子身份证构建. 生物技术通报, 2016,32(4):137-142.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.04.018
[10] 邱杨, 李锡香, 李清霞 , 等. 利用SSR标记构建萝卜种质资源分子身份证. 植物遗传资源学报, 2014,15(3):648-654.
[11] 徐雷锋, 葛亮, 袁素霞 , 等. 利用荧光标记SSR构建百合种质资源分子身份证. 园艺学报, 2014,41(10):2055-2064.
[12] 王立新, 李云伏, 常利芳 , 等. 建立小麦品种DNA指纹的方法研究. 作物学报, 2007,33(10):1738-1740.
[13] Röder M S, Korzun V, Wendehake K , et al. A microsatellite map of wheat. Genetics, 1998,149(4):2007-2023.
[14] Anderson J A, Churchill G A, Autrique J E , et al. Optimizing parental selection for genetic linkage maps. Genome, 1993,36(1):181-186.
doi: 10.1139/g93-024
[15] Petit R, Abdelhamid E M, Pons O . Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 1998,12(4):844-855.
doi: 10.1046/j.1523-1739.1998.96489.x
[16] Nei M . Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 1973,70(12):3321-3323.
[17] 姜辉, 王永翠, 高明伟 , 等. 棉花遗传多样性分析SSR标记的快速预筛. 中国棉花, 2019,46(4):13-16.
doi: 10.11963/1000-632X.jhzjs.20190328
[18] 李红琴, 刘宝龙, 刘登才 , 等. 青海省审定小麦品种的农艺性状多样性分析. 麦类作物学报, 2011,31(6):1040-1045.
doi: 10.7606/j.issn.1009-1041.2011.06.008
[19] 程斌, 张淑英, 张明霞 , 等. 山东省近年育成小麦品种(系)的遗传多样性分析. 山东农业科学, 2016,48(9):17-22.
[20] 赵檀, 金柳艳, 李远 , 等. 基于全基因组的河北省小麦品种遗传多样性分析. 植物遗传资源学报, 2015,16(1):45-53.
[21] 高晓慧, 任翠翠, 宋杰 , 等. 黄淮南片麦区区试小麦品种(系)的遗传多样性及Pm21和1BL/1RS分子检测. 西北农业学报, 2018,27(6):772-778.
[22] 陈丽华, 邓晓青, 吴昆仑 , 等. 青海省小麦主栽品种遗传多样性的SSR标记分析. 西北农业学报, 2012,21(2):38-42,82.
[23] 高运来, 朱荣胜, 刘春燕 , 等. 黑龙江部分大豆品种分子ID的构建. 作物学报, 2009,35(2):211-218.
doi: 10.3724/SP.J.1006.2009.00211
[24] 王黎明, 焦少杰, 姜艳喜 , 等. 142 份甜高粱品种的分子身份证构建. 作物学报, 2011,37(11):1975-1983.
doi: 10.3724/SP.J.1006.2011.01975
[25] 栗媛, 王茂芊, 邳植 , 等. 利用SSR构建甜菜品种的分子身份证. 中国糖料, 2019,41(4):46-49.
[1] Song Xiao, Huang Chenchen, Huang Shaomin, Zhang Keke, Yue Ke, Zhang Shuiqing, Guo Doudou, Zhang Yuting. Effects of Tillage and Organic Fertilization Modes on Soil Physical and Chemical Properties and Wheat Yield [J]. Crops, 2020, 36(3): 102-108.
[2] Lü Guangde, Yin Fuwei, Sun Yingying, Qian Zhaoguo, Xu Jiali, Li Ning, Xue Lina, Wu Ke. Effects of Different Seeding Rates on Yield, Dry Matter Accumulation and Distribution of Linmai 4 [J]. Crops, 2020, 36(3): 142-148.
[3] Chai Fangmei, Gao Tiantian, Chai Shouxi, Cheng Hongbo, Song Yali, Lu Qinglin. Effects of Planting Density on Wheat Yield Formation in Different Ecological Regions of Gansu Province [J]. Crops, 2020, 36(3): 154-160.
[4] Liu Yong, Liu Yike, Zhu Zhanwang, Tian Jindong, Chen Ling, Zou Juan, Zhao Fawen, Guan Jian, Gao Chunbao, Tong Hanwen. Current Situation and Analysis on Organic Production of Wheat—Illustrated by the Case of Nanzhang County in Hubei [J]. Crops, 2020, 36(3): 16-21.
[5] Zhu Yingjie, Liu Fuqi, Zhang Yan, Chang Xuhong, Wang Demei, Tao Zhiqiang, Wang Yanjie, Yang Yushuang, Zhao Guangcai. Effect of Nitrogen Treatment on Wheat Yield and Quality in Different Soil Conditions [J]. Crops, 2020, 36(3): 184-190.
[6] Li Chunhua, Huang Jinliang, Yin Guifang, Wang Yanqing, Lu Wenjie, Sun Daowang, Wang Chunlong, Guo Laichun, Hong Bo, Ren Changzhong, Wang Lihua. Genetic Analysis of Grain Shape Related Traits in Tartary Buckwheat [J]. Crops, 2020, 36(3): 42-46.
[7] Duan Junzhi, Qi Xueli, Feng Lili, Zhang Huifang, Sun Yan, Yan Zhaoling, Chen Haiyan, Qi Hongzhi, Fan Wenjie, Yang Cuiping, Liu Yuxia, Ren Yinling, Zhang Jiayuan, Li Ying, Zhuo Wenfei. Progress on Application of Drought Tolerance Genes in Wheat Drought Tolerance Genetic Engineering [J]. Crops, 2020, 36(3): 7-15.
[8] Wang Hezheng,Shen Sihan,Zhang Dongxia,Wang Gaijing,Zheng Jinzhi,Bi Biao,Wang Wenjie. Effects of Salicylic Acid on Physiological and Biochemical Characteristics of Wheat Seedling under Water Stress [J]. Crops, 2020, 36(2): 168-171.
[9] Ma Mengli,Wang Tiantao,Lei En,Meng Hengling,Zhang Wei,Zhang Tingting,Lu Bingyue. Genetic Diversity Analysis of Amomum tsao-ko in Jinping Based on Phenotypic Traits and SSR Markers [J]. Crops, 2020, 36(2): 54-59.
[10] Chen Tianxin,Wang Yanjie,Zhang Yan,Chang Xuhong,Tao Zhiqiang,Wang Demei,Yang Yushuang,Zhu Yingjie,Liu Akang,Shi Shubing,Zhao Guangcai. Effects of Different Nitrogen Rates on Photosyntheticand Physiological Indexes and Yield of Winter Wheat [J]. Crops, 2020, 36(2): 88-96.
[11] Zhang Bo,Gao Tiantian,Cheng Hongbo,Li Rui,Chai Yuwei,Li Yawei,Chai Shouxi. Effects of Mulching on Water Content of Plant and Flag Leaves and Grain Yield of Winter Wheat in Dryland [J]. Crops, 2020, 36(2): 97-104.
[12] Huang Yinling,Lei Zhongshun,Zheng Tao,Suo Xinxia. Effects of Different Nitrogen Concentrations on Yield and Benefit of Winter Wheat and Soil Physical and Chemical Properties [J]. Crops, 2020, 36(1): 130-135.
[13] Zhang Yongqiang,Qi Xiaoxiao,Zhang Lu,Dong Huiyun,Chen Chuanxin, Sailihan·Sai,Xue Lihua,Chen Xingwu,Lei Junjie. Effects of Nitrogen Management on Leaf Photosynthetic Characteristics and Yield of Winter Wheat under Drip Irrigation [J]. Crops, 2020, 36(1): 141-145.
[14] Yang Wenbiao,Zhang Huiyu,Li Ying,Qi Zewei,Liu Kaikai,Gao Zhiqiang,Sun Min,Xue Jianfu. Spatiotemporal Distribution of Potential Productivity of Winter Wheat and Meteorological Factor Analysis in Shanxi Province [J]. Crops, 2020, 36(1): 161-167.
[15] Wang Zhiwei, Wang Zhilong, Qiao Xiangmei, Yang Jinhua, Cheng Jiasheng, Cheng Geng, Yu Yaxiong. Identification of Genes Associated with Rust Resistance and Fusarium Head Blight Resistance in Yunnan Wheat Cultivars (Lines) by KASP Assays [J]. Crops, 2020, 36(1): 187-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!