Crops ›› 2020, Vol. 36 ›› Issue (4): 16-20.doi: 10.16035/j.issn.1001-7283.2020.04.003

Previous Articles     Next Articles

Progress of Wheat Fhb1 Gene Locating and Cloning and Its Utilization in the Resistance Breeding

Liu Dongjun(), Song Weifu, Yang Xuefeng, Zhao Lijuan, Song Qingjie, Zhang Chunli, Xin Wenli(), Xiao Zhimin   

  1. Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
  • Received:2019-12-20 Revised:2020-02-11 Online:2020-08-15 Published:2020-08-11
  • Contact: Xin Wenli E-mail:dongdong415@126.com;xinwenli1966@163.com

Abstract:

Fusarium head blight (FHB) has become the major disease of wheat, which seriously threatens wheat production as well as consumers health in China. At present, resistant varieties combined with chemical control have become the most effective ways to combat FHB. FHB resistance is controlled by many genes. Fhb1 was identified effective and stable gene, and plays an important role in improving the FHB resistance. The location, molecular marker, cloning , the utility value and application mode of Fhb1 gene were reviewed in this paper. Introduction of Fhb1 gene by selective backcross improves FHB resistance, combined with chemical control to provide security for wheat production in China.

Key words: Wheat, Fusarium head blight, Fhb1 gene, Utilization

Table 1

Molecular markers of Fhb1"

标记类型
Marker type
分子标记
Molecular marker
序列
Sequence
退火温度
Annealing temperature (℃)
文献
Reference
STS His-InDel ATGCGTGCGCTGTACTTG
CGTCACAGAGTCCAGTGAAA
55 朱展望等[35]
STS TaHRC ATTCCTACTAGCCGCCTGGT
ACTGGGGCAAGCAAACATTG
57 Su等[36]
KASP Fhb1 GAAGGTGACCAAGTTCATGCTTTGGGCTCACGTCGTGCAA
GAAGGTCGGAGTCAACGGATTTGTCTGTTTCGCTGGGATG
CTTCCAGTTTCTGCTGCCAT
55 Su等[36]

Fig.1

Gene map and molecular structure of TaHRC (His) [40]"

[1] Yin Y, Liu X, Li B , et al. Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology, 2009,99(5):487.
[2] Pieczul K, Horoszkiewiez J J, Perek A , et al. The risk of production of mycotoxins in cereal grains by the chemotypes of Fusarium spp. Fresenius Environmental Bulletin, 2015,24(8):2527-2533.
[3] Chen Y, Zhou M G . Characterization of Fusarium graminearum isolates resistant to both carbendazim and a new fungicide. Phytopathology, 2009,99(4):441-446.
[4] Spolti P, Del Ponte E M, Dong Y H , et al. Triazole sensitivity in a contemporary population of Fusarium graminearum from New York wheat and competitiveness of a tebuconazole-resistant isolate. Plant Disease, 2014,98(5):607-613.
[5] 陈然, 李俊凯, 李黎 , 等. 小麦赤霉病生物防治研究进展. 2014,43(12):1-5.
[6] 杨荣明, 吴燕, 朱凤 , 等. 2010年江苏省小麦赤霉病流行特点及防治对策探讨. 中国植保导刊, 2011,31(2):16-19.
[7] 武爱波, 赵纯森, 李和平 , 等. 2套小麦鉴别寄主对我国代表性禾谷镰刀菌的抗性反应. 植物病理学报, 2006,36(3):285-288.
[8] Jia H Y, Zhou J Y, Xue S L , et al. A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. The Crop Journal, 2018,6(1):48-59.
[9] Gilbert J, Haber S . Overview of some recent research developments in fusarium head blight of wheat. Canadian Journal of Plant Pathology, 2013,35(2):149-174.
[10] Cainong J C, Bockus W W, Feng Y G , et al. Chromosome engineering,mapping,and transferring of resistance to Fusarium head blight disease from Elymusts ukushiensis into wheat. Theoretical and Applied Genetics, 2015,128(6):1019-1027.
[11] Cuthbert P A, Somers D J, Brulé-Babel A . Mapping of Fhb2 on chromosome 6BS:a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2007,114(3):429-437.
[12] Cuthbert P A, Somers D J, Thomas J , et al. Fine mapping,a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2006,112(8):1465-1472.
[13] Guo J, Zhang X L, Hou Y L , et al. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theoretical and Applied Genetics, 2015,128(11):2301-2316.
[14] Liu S X, Zhang X L, Pumphrey M O , et al. Complex microcolinearity among wheat,rice,and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to Fusarium head blight in wheat. Functional and Integrative Genomics, 2006,6(2):83-88.
[15] Qi L L, Pumphrey M O, Friebe B , et al. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theoretical and Applied Genetics, 2008,117(7):1155-1166.
[16] Xue S L, Xu F, Tang M Z , et al. Precise mapping Fhb5,a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011,123(6):1055-1063.
[17] 武爱波 . 禾谷镰刀菌(Fusarium graminearum)致病力鉴定、毒素检测及其分子生物学研究. 武汉:华中农业大学, 2005.
[18] 张昊 . 中国麦类赤霉病菌群体遗传多样性及生态适应性研究. 北京:中国农业科学院, 2011.
[19] 师雯, 韩铮, 武爱波 , 等. 温度和pH对不同镰刀菌生长及产毒的影响. 食品工业科技, 2015,36(18):117-122.
[20] 李韬, 李嫒嫒, 李磊 . 小麦赤霉病:从表型鉴定到抗性改良. 科技导报, 2016,34(22):75-80.
[21] 程顺和, 张勇, 别同德 , 等. 中国小麦赤霉病的危害及抗性遗传改良. 江苏农业学报, 2012,28(5):938-942.
[22] 全国小麦赤霉病研究协作组. 小麦品种资源抗赤霉病性鉴定研究. 作物品种资源, 1984(4):2-7.
[23] He X Y, Singh P K, Schlang N , et al. Chracterization of Chinese wheat germplasm for resistance to Fusarium head blight at CIMMYT,Mexico. Euphytica, 2014,195(3):383-395.
[24] 刘易科, 佟汉文, 朱展望 , 等. 小麦赤霉病抗性改良研究进展. 麦类作物学报, 2016,36(1):51-57.
[25] Zhu Z W, Hao Y F, Mergoum M , et al. Breeding wheat for resistance to Fusarium head blight in the Global North:China,USA,and Canada. The Crop Journal, 2019,7(6):730-738.
[26] Waldron B L, Moreno-Sevilla B, Anderson J A , et al. RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Science, 1999,39(3):805-811.
[27] Anderson J A, Stack R W, Liu S , et al. DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theoretical and Applied Genetics, 2001,102(8):1164-1168.
[28] Zhou W C, Kolb F L, Bai G H , et al. Validation of a major QTL for scrab resistance with SSR markers and use of marker-assisted selection in wheat. Plant Breeding, 2003,122(1):40-46.
[29] Zhang X, Zhou M P, Ren L J , et al. Molecular characterization of Fusarium head blight resistance from wheat variety Wangshuibai. Euphytica, 2004,139(1):59-64.
[30] Cuthbert P A, Somers D J, Thomas J , et al. Fine mapping Fhb1,a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2006,112(8):1465-1472.
[31] Liu S, Pumphrey M O, Gill B S , et al. Toward positional cloning of Fhb1,a major QTL for Fusarium head blight resistance in wheat. Cereal Research Communications, 2008,36(S6):195-201.
[32] 薛树林 . 小麦高密度PCR分子标记遗传图谱的构建及抗赤霉病QTL近等基因系的选育. 南京:南京农业大学, 2007.
[33] 姜鸽 . 小麦抗赤霉病主效基因Fhb1区间的重组体分析. 南京:南京农业大学, 2014.
[34] 董晶晶, 钱丹, 李磊 , 等. 小麦地方品种黄方柱中赤霉病主效抗性位点Fhb1的精细定位. 麦类作物学报, 2015,35(12):1639-1645.
[35] 朱展望, 徐登安, 程顺和 , 等. 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源. 作物学报, 2018,44(4):473-482.
[36] Su Z Q, Jin S J, Zhang D D , et al. Development and validation of diagnostic markers for Fhb1 region,a major QTL for Fusarium head blight resistance in wheat. Theoretical and Applied Genetics, 2018,131(8):2371-2380.
[37] Rawat N, Pumphrey M O, Liu S , et al. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nature Genetics, 2016,48(12):1576-1580.
[38] He Y, Zhang X, Zhang Y , et al. Molecular characterization and expression of PFT,an FHB resistance gene at the Fhb1 QTL in wheat. Phytopathology, 2018,108(6):730-736.
[39] Su Z Q, Bernardo A, Tian B , et al. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nature Genetics, 2019,51(7):1099-1105.
[40] Li G Q, Zhou J Y, Jia H Y , et al. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nature Genetics, 2019,51(7):1106-1112.
[41] Li T, Zhang H J, Huang Y W , et al. Effects of the Fhb1 gene on Fusarium head blight resistance and agronomic traits of winter wheat. The Crop Journal, 2019,7(6):799-808.
[42] 张宏军, 宿振起, 柏贵华 , 等. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018,44(4):505-511.
[43] 许峰, 张从宇, 闫素辉 , 等. 小麦抗赤霉病3B-QTL和6B-QTL的遗传互作模式分析. 植物保护学报. 2017,44(2):196-202.
[44] 周淼平, 姚金保, 张平平 , 等. 黄淮麦区小麦抗赤霉病新种质的创制和筛选. 麦类作物学报, 2018,38(3):268-274.
[45] Bernardo A, Bai G, Yu J , et al. Registration of near-isogenic winter wheat germplasm contrasting in Fhb1 for Fusarium head blight resistance. Journal of Plant Registrations, 2014,8(1):106-108.
[46] Pumphrey M O, Bernardo R, Anderson J A . Validating the QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Science, 2007,47(1):200-206.
[47] Anderson J A . Marker-assisted selection for Fusarium head blight resistance in wheat. International Journal of Food Microbiology, 2007,119(1):51-53.
[1] Cao Changlin, Lü Huiqing, Hao Zhiping, Gao Xiang, Zhou Zhongyu. Effects of Foliar Spraying Zinc and Boron Fertilizer on the Yield and Quality of Jin Buckwheat (Bitter) No.5 [J]. Crops, 2020, 36(4): 135-142.
[2] Fan Yuanyuan, Wu Haimei, Pang Lei, Lu Jianlong, Xia Bowen, Yang Xuhai. Effects of Straw Mulching on Wheat Yield in Different Ecological Regions in Northern Semi-Arid Areas of China Based on Meta Analysis [J]. Crops, 2020, 36(4): 143-149.
[3] Zhang Qian, Li Yaofa, Wang Shulin, Wang Yan, Feng Guoyi, Lin Yongzeng, Liang Qinglong, Lei Xiaopeng, Qi Hong. Effects of Strip-Planting of Cotton-Wheat on Cotton Aphid [J]. Crops, 2020, 36(4): 206-210.
[4] Yang Ziguang, Guo Lilei, Zhang Ke, Sun Junwei, Meng Limei. Development Trend of the Major Traits of Winter Wheat Varieties (Lines) in the Huang-Huai Dryland [J]. Crops, 2020, 36(4): 30-36.
[5] Yang Bin, Yan Xue, Wen Hongwei, Wang Shuguang, Lu Lahu, Fan Hua, Jing Ruilian, Sun Daizhen. Study on the Evaluation of Stay-Green Traits of Wheat and Its Correlation with Yield-Related Traits under Different Water Conditions [J]. Crops, 2020, 36(4): 45-52.
[6] Chen Weiguo, Zhang Zheng, Shi Yugang, Cao Yaping, Wang Shuguang, Li Hong, Sun Daizhen. Drought-Tolerance Evaluation of 211 Wheat Germplasm Resources [J]. Crops, 2020, 36(4): 53-.
[7] Shan Zilong, Ban Jinfu, Zhao Yankun, Cao Qiao, Tian Guoying, He Mingqi, Gao Zhenxian. Detection of Quality-Related Genes in the Wheat Varieties Authorized in Hebei Province by KASP Markers [J]. Crops, 2020, 36(4): 64-71.
[8] Xu Yuanyuan, Zhao Peng, Hong Quanchun, Zhu Xiaoqin, Pei Dongli. Isolation and Expression Analysis of Transcription Factor Gene TaMYB70 in Wheat [J]. Crops, 2020, 36(4): 84-90.
[9] Song Xiao, Huang Chenchen, Huang Shaomin, Zhang Keke, Yue Ke, Zhang Shuiqing, Guo Doudou, Zhang Yuting. Effects of Tillage and Organic Fertilization Modes on Soil Physical and Chemical Properties and Wheat Yield [J]. Crops, 2020, 36(3): 102-108.
[10] Lü Guangde, Yin Fuwei, Sun Yingying, Qian Zhaoguo, Xu Jiali, Li Ning, Xue Lina, Wu Ke. Effects of Different Seeding Rates on Yield, Dry Matter Accumulation and Distribution of Linmai 4 [J]. Crops, 2020, 36(3): 142-148.
[11] Chai Fangmei, Gao Tiantian, Chai Shouxi, Cheng Hongbo, Song Yali, Lu Qinglin. Effects of Planting Density on Wheat Yield Formation in Different Ecological Regions of Gansu Province [J]. Crops, 2020, 36(3): 154-160.
[12] Liu Yong, Liu Yike, Zhu Zhanwang, Tian Jindong, Chen Ling, Zou Juan, Zhao Fawen, Guan Jian, Gao Chunbao, Tong Hanwen. Current Situation and Analysis on Organic Production of Wheat—Illustrated by the Case of Nanzhang County in Hubei [J]. Crops, 2020, 36(3): 16-21.
[13] Zhu Yingjie, Liu Fuqi, Zhang Yan, Chang Xuhong, Wang Demei, Tao Zhiqiang, Wang Yanjie, Yang Yushuang, Zhao Guangcai. Effect of Nitrogen Treatment on Wheat Yield and Quality in Different Soil Conditions [J]. Crops, 2020, 36(3): 184-190.
[14] Li Chunhua, Huang Jinliang, Yin Guifang, Wang Yanqing, Lu Wenjie, Sun Daowang, Wang Chunlong, Guo Laichun, Hong Bo, Ren Changzhong, Wang Lihua. Genetic Analysis of Grain Shape Related Traits in Tartary Buckwheat [J]. Crops, 2020, 36(3): 42-46.
[15] Li Hongqin, Liu Baolong, Zhang Bo, Zhang Huaigang. Analysis of Genetic Diversity and Establishment of Molecular ID of the Wheat Cultivars Registered in Qinghai Using SSR [J]. Crops, 2020, 36(3): 60-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!