Crops ›› 2020, Vol. 36 ›› Issue (6): 61-68.doi: 10.16035/j.issn.1001-7283.2020.06.009

Previous Articles     Next Articles

Effects of Low Temperature under Different Phases between Sowing and Seedling Periods on Growth and Physiological Resistance of Maize Seedlings

Jian Liqun1(), Zhang Yifei1,2, Yang Kejun1,3(), Wang Yufeng1,2, Chen Tianyu1, Zhang Jiwei1, Zhang Jinsong1, Li Qing1, Liu Tianhao1, Xiao Shanshan1, Peng Cheng4, Wang Baosheng5   

  1. 1College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, Heilongjiang, China
    3Beidahuang Modern Agricultural Industry Technology Provincial Cultivation Collaborative Innovation Center, Daqing 163319, Heilongjiang, China
    4Qixingpao Farm in Heilongjiang Province, Heihe 161435, Heilongjiang, China
    5Heshan Farm in Heilongjiang Province, Heihe 161443, Heilongjiang, China
  • Received:2020-02-07 Revised:2020-03-16 Online:2020-12-15 Published:2020-12-09
  • Contact: Yang Kejun E-mail:bynkjlq@163.com;byndykj@163.com

Abstract:

In order to cope with the adverse effects of periodic low temperature caused by the future climate change on the maize seedlings establishment in cold region, maize variety Xianyu 335 was used as test material, and based on the dynamic simulation of maize field temperature condition in cold region, two-factor completely randomized design was applied at different low temperature treatment phases (1-5, 6-10, 11-15, 16-20, 21-25, 26-30 days after sowing) and durations (0, 1, 2, 3, 4, 5 days) were set up, respectively. The changes in differences of maize seedling emergence process, seedling growth, biomass accumulation and resistance physiological indexes among every treatment combination were compared and analyzed. The results showed that 1-5 days of low temperature treatment, no matter at which phase, could reduce the emergence rate and survival rate, inhibit the growth and biomass accumulation of maize seedlings, and caused the decrease of chlorophyll content and the maximum photochemical efficiency of leaves, as well as the increase of osmoregulation substance content and membrane lipid peroxidation level. The degree of influence was increasing with the low temperature durations, and the plants during 11-25 days after sowing, especially 16-20 days (the critical period of coleoptile break through the soil and seeding emergence) were most sensitive to low temperature.

Key words: Maize, Periodic low temperature, Low temperature duration, Seedling growth, Resistant physiological index

Fig.1

Variation trend for the daily average ground temperature in spring and the artificial simulated conditions of temperature"

Fig.2

Effects of different low temperature durations at different stages on seedling emergence rate of maize"

Table 1

Interactive effects of low temperature treatment phases and durations on maize seedling emergence rate and survival rate"

试验因素
Experimental
factor
处理
Treatment
出苗速率
Seedling
emergence rate
成苗率
Seedling survival
rate (%)
P P1 0.046b 93.49a
P2 0.044cd 93.23a
P3 0.045bc 92.97a
P4 0.042e 89.58a
P5 0.043de 91.41a
P6 0.048a 92.45a
D D0 0.049a 98.44a
D1 0.046b 96.35ab
D2 0.045bc 93.49bc
D3 0.044cd 90.89cd
D4 0.043d 88.54de
D5 0.042d 85.42e
FF-value P 17.44** 1.42
D 19.18** 13.84**
P×D 1.06 0.53

Fig.3

Effects of different low temperature durations at different stages on seedling survival rate of maize"

Table 2

Effects of low temperature treatment phases and durations on morphological parameters and biomass accumulations of maize seedlings"

处理
Treatment
株高
Plant height
(cm)
茎基部直径
Diameter for basal
part of stem (cm)
叶面积
Leaf area
(cm2)
胚芽鞘长
Coleoptile
length (cm)
初生胚根长
Primary radicle
length (cm)
植株鲜重
Plant fresh
weight (g)
植株干重
Plant dry
weight (g)
贮藏物质转运率
Storage substance
transportation ratio (%)
P1D0 17.48a 0.348a 27.25a 1.89e 14.26a 1.47a 0.177a 59.6a
P1D1 16.89ab 0.335ab 23.87b 1.96bcde 12.73b 1.42ab 0.161ab 59.0ab
P1D2 16.62abc 0.327abcd 22.15cde 1.97bcde 11.77c 1.36abcde 0.151abc 57.5abc
P1D3 16.48abcd 0.326abcd 21.02cdefghi 1.97bcde 11.48cd 1.30abcdef 0.15abc 54.3abcd
P1D4 16.33abcd 0.326abcd 19.90ghij 1.98abcde 10.63defghi 1.27abcdef 0.145abcd 53.7abcd
P1D5 16.08bcde 0.318bcdefgh 19.59hijk 1.99abcde 9.79hijklm 1.22abcdefgh 0.138bcde 52.9abcde
P2D0 17.48a 0.348a 27.25a 1.89e 14.26a 1.47a 0.177a 59.6a
P2D1 16.33abcd 0.329abc 22.43bcd 1.96bcde 11.64cdef 1.42ab 0.163abc 55.9abc
P2D2 16.28abcd 0.325abcde 21.33cdefgh 1.97bcde 11.23cdefg 1.31abcdef 0.155abcd 52.5abcde
P2D3 16.24abcd 0.322abcdef 20.69defghi 1.98bcde 10.78fghijk 1.23abcdefgh 0.145abcd 52.3abcde
P2D4 15.96bcde 0.321abcdefg 20.24fghij 1.98abcde 10.13hijklm 1.18bcdefgh 0.135bcde 50.7bcdef
P2D5 15.61bcdefg 0.320bcdefg 19.32ijkl 2.00abcde 9.98mn 1.15cdefghi 0.121bcde 50.7bcdef
P3D0 17.48a 0.348a 27.25a 1.89e 14.26a 1.47a 0.177a 59.6a
P3D1 16.28abcd 0.302cdefghi 22.09cdef 2.01abcde 11.6cd 1.38abcd 0.151ab 56.7abc
P3D2 15.97bcde 0.302cdefghi 21.07cdefghi 2.02abcde 11.31cde 1.24abcdefg 0.147abcd 52.9abcde
P3D3 15.78bcdef 0.290hi 20.41efghi 2.04abcde 10.91cdefgh 1.20bcdefgh 0.143bcde 51.2abcdef
P3D4 15.71bcdefg 0.290hi 19.89ghij 2.08abcde 9.96fghijk 1.15cdefghi 0.139bcde 50.1cdef
P3D5 15.27defg 0.288i 19.31ijkl 2.10abcd 8.90fghijk 1.12defghi 0.136bcdef 49.3cdef
P4D0 17.48a 0.348a 27.25a 1.89e 14.26a 1.47a 0.177a 59.6a
P4D1 14.90efgh 0.296fghi 18.54jkl 2.05abcde 10.43efghij 1.21bcdefgh 0.147abcd 54.6abcd
P4D2 13.90hijk 0.293ghi 16.81mn 2.09abcde 9.90ghijkl 1.05fghij 0.138bcde 50.1cdef
P4D3 13.43ijk 0.290i 15.60nop 2.11abc 9.68ijklm 0.98hijk 0.122cdef 45.8defg
P4D4 13.27jk 0.288i 15.05op 2.13ab 9.32klm 0.87jk 0.106ef 44.6efg
P4D5 12.78k 0.280i 14.15p 2.19a 8.25n 0.79k 0.099f 39.5g
P5D0 17.48a 0.348a 27.25a 1.89e 14.26a 1.47a 0.177a 59.6a
P5D1 16.09bcde 0.324abcdef 21.10cdefghi 1.90cde 11.22cde 1.29abcdef 0.163ab 57.0abc
P5D2 15.54cdefg 0.307bcdefghi 20.69defghi 1.91cde 9.85hijkl 1.24abcdefg 0.144abcd 56.6abc
P5D3 14.47ghij 0.305cdefghi 19.93ghij 1.92bcde 9.47jklm 1.17bcdefgh 0.137bcde 49.3cdef
P5D4 13.84hijk 0.303cdefghi 17.67lm 1.93bcde 9.29klm 0.99ghijk 0.114def 44.3efg
P5D5 13.65ijk 0.300defgji 16.47mno 1.94bcde 8.94lmn 0.92ijk 0.113def 43.3fg
P6D0 17.48a 0.348a 27.25a 1.89e 14.26a 1.47a 0.177a 59.6a
P6D1 15.51cdefg 0.321abcdef 22.81bc 1.92de 10.97cd 1.38abc 0.161ab 57.0abc
P6D2 15.42cdefg 0.318bcdefgh 21.63cdefg 1.88bcde 10.87cde 1.29abcdef 0.143abc 53.9abcd
P6D3 14.89efgh 0.297efghi 21.04cdefghi 1.93bcde 10.14cdef 1.15cdefghi 0.137abcd 52.1abcde
P6D4 14.55fghi 0.297efghi 19.67hijk 1.93bcde 9.78fghijk 1.15cdefghi 0.133bcde 51.8abcdef
P6D5 14.48ghij 0.290i 17.90klm 1.95bcde 8.79lmn 1.12efghi 0.128cdef 49.9cdef
FF-value
P 19.76** 13.89** 50.70** 6.16** 18.77** 5.89** 2.74 3.31**
D 27.20** 27.67** 216.98** 3.55* 200.51** 15.04** 17.73** 12.17**
P×D 1.21 0.80 2.71** 0.31 1.48 0.39 0.39 0.46

Fig.4

Leaf chlorophyll content and maximum photochemical efficiency of maize seedlings effected by low temperature with different phases and various durations"

Table 3

Interactive effects of low temperature treatment phases and durations on characteristics of maize seedling leaf photosynthesis and physiological indexes for resistance"

试验因素
Experimental factor
处理
Treatment
SPAD Fv/Fm 可溶性蛋白含量
Soluble protein
content (mg/g FW)
脯氨酸含量
Proline content
(μg/g FW)
可溶性糖含量
Soluble sugar
content (mg/g FW)
丙二醛含量
Malondialdehyde content (μmol/g FW)
P P1 33.94a 0.764a 2.85e 24.90d 0.62e 3.45e
P2 33.72a 0.760a 2.98d 25.28cd 0.67d 3.66d
P3 33.35a 0.752b 3.00d 26.05c 0.80c 4.11c
P4 29.74c 0.737d 3.33a 30.52a 0.93a 4.55a
P5 31.30b 0.743cd 3.29b 29.11b 0.83b 4.35b
P6 31.92b 0.749bc 3.11c 28.74b 0.81c 4.14c
D D0 36.13a 0.767a 2.37f 20.66f 0.44f 2.95f
D1 33.35b 0.756b 2.73e 23.24e 0.62e 3.71e
D2 32.55b 0.753bc 2.96d 25.82d 0.72d 4.01d
D3 31.33c 0.747cd 3.23c 29.38c 0.83c 4.26c
D4 30.71cd 0.742de 3.52b 31.36b 0.94b 4.51b
D5 29.91d 0.738e 3.75a 34.16a 1.11a 4.81a
FF-value P 29.28** 14.17** 382.70** 72.26** 450.61** 188.36**
D 54.20** 15.42** 2 921.27** 349.68** 1 940.62** 470.94**
P×D 1.80* 0.93 86.20** 4.97** 31.30** 9.32**

Fig.5

Changes of leaf physiological indexes for resistance effected by low temperature with different phases and various durations"

[1] 杨若子, 周广胜. 1961—2013年东北三省玉米低温冷害频率的时空动态研究. 气象科学, 2016,36(3):311-318.
[2] 高晓容, 王春乙, 张继权, 等. 东北地区玉米主要气象灾害风险评价与区划. 中国农业科学, 2014,47(21):4805-4820.
[3] 杨小环, 赵维峰, 孙娜娜, 等. 外源水杨酸缓解低温胁迫对玉米种子萌发和早期幼苗生长伤害的生理机制. 核农学报, 2017,31(9):1811-1817.
[4] 冯锐, 武晋雯, 纪瑞鹏, 等. 低温胁迫下春玉米生长参数及产量影响分析. 干旱地区农业研究, 2013,31(1):183-187.
[5] 马树庆, 王琪, 吕厚荃, 等. 水分和温度对春玉米出苗速度和出苗率的影响. 生态学报, 2012,32(11):3378-3385.
doi: 10.5846/stxb201105050585
[6] 徐文强, 杨祁峰, 牛俊义, 等. 温度与土壤水分对玉米种子萌发及幼苗生长特性的影响. 玉米科学, 2013,21(1):69-74.
[7] 张晓聪, 周羽, 张林, 等. 玉米自交系芽期耐冷性鉴定. 作物杂志, 2016(2):21-26.
[8] 于文颖, 冯锐, 纪瑞鹏, 等. 苗期低温胁迫对玉米生长发育及产量的影响. 干旱地区农业研究, 2013,31(5):220-226.
[9] 李洁, 徐军桂, 林程, 等. 引发对低温胁迫下不同类型玉米种子萌发及幼苗生理特性的影响. 植物生理学报, 2016,52(2):157-166.
[10] 孙阳, 王燚, 曲丹阳, 等. 5-氨基乙酰丙酸提高玉米幼苗抗低温性及其生理机制. 生态学杂志, 2016,35(7):1737-1743.
[11] 王琪, 马树庆, 郭建平, 等. 温度对玉米生长和产量的影响. 生态学杂志, 2009,28(2):255-260.
[12] 杨小环, 马金虎, 郭数进, 等. 种子引发对盐胁迫下高粱种子萌发及幼苗生长的影响. 中国生态农业学报, 2011,19(1):103-109.
[13] 赵莹, 杨克军, 赵长江, 等. 外源糖调控玉米光合系统和活性氧代谢缓解盐胁迫. 中国农业科学, 2014,47(20):3962-3972.
doi: 10.3864/j.issn.0578-1752.2014.20.004
[14] 陈小娟, 杨依彬, 龚林, 等. 三种不同聚合度组成的聚磷酸铵对玉米苗期生长的影响. 植物营养与肥料学报, 2019,25(2):337-342.
[15] 曹慧英, 董树亭, 史建国, 等. 播种深度对夏玉米幼苗性状和根系特性的影响. 应用生态学报, 2015,26(8):2397-2404.
[16] 李合生. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2001.
[17] 陈晶, 庞思琪, 赵秀兰. 外源生长素对镉胁迫下玉米幼苗生长及抗氧化系统的影响. 植物生理学报, 2016,52(8):1191-1198.
[18] 曹栋栋, 黄玉韬, 胡晋, 等. 精胺和亚精胺引发对超甜玉米不同成熟度种子萌发质量的影响. 植物生理学报, 2018,54(12):1829-1838.
[19] Verheul M J, Picatto C, Stamp P. Growth and development of maize (Zea mays L.) seedlings under chilling conditions in the field. European Journal of Agronomy, 1996,5(S1/2):31-43.
doi: 10.1016/S1161-0301(96)02007-2
[20] Gupta A K, Kaur N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. Journal of Biosciences, 2005,30(5):761-776.
doi: 10.1007/BF02703574 pmid: 16388148
[21] 张海艳. 低温对鲜食玉米种子萌发及幼苗生长的影响. 植物生理学报, 2013,49(4):347-350.
[22] 李丽杰, 顾万荣, 李从锋, 等. DCPTA对低温下玉米叶片抗氧化系统及渗透调节物质的影响. 植物生理学报, 2016,52(12):1829-1841.
[23] 高灿红, 胡晋, 郑昀晔, 等. 玉米幼苗抗氧化酶活性、脯氨酸含量变化及与其耐寒性的关系. 应用生态学报, 2006(6):1045-1050.
[24] 刘禹辰, 杨德光, 李梁, 等. 低温胁迫对玉米种子萌发及淀粉分解酶类活性的影响. 玉米科学, 2018,26(1):64-68.
[25] 王征宏, 赵威, 郭秀璞, 等. 不同倍性小麦种子萌发特征及其对水分胁迫敏感性的差异. 植物生理学报, 2013,49(8):817-823.
[26] Eveland A L, Jackson D P. Sugars,signalling,and plant development. Journal of Experimental Botany, 2012,63(9):3367-3377.
doi: 10.1093/jxb/err379 pmid: 22140246
[27] 刘旋, 佟昊阳, 田礼欣, 等. 外源海藻糖对低温胁迫下玉米幼苗根系生长及生理特性的影响. 中国农业气象, 2018,39(8):538-546.
[28] Hendrickson L, Ball M C, Wood J T, et al. Low temperature effects on photosynthesis and growth of grapevine. Plant Cell and Environment, 2004,27(7):795-809.
[29] 田礼欣, 杨晔, 左师宇, 等. 脱落酸对低温胁迫下玉米幼苗生长和光合特性的影响. 作物杂志, 2018(6):76-82.
[1] Dong Huaiyu, Dong Zhi, Liu Kejie, Wang Lijuan, Liu Peibin, Hou Zhiyan. Effects of Different Maize Straw Returning Modeson Occurrence of Main Diseases of Maize [J]. Crops, 2020, 36(6): 104-108.
[2] Fu Xuepeng, Shen Tongfei, Sun Xiaobo, Liu Xiaohan, Yang Xiaojie. Effects of Streptomyces sp. FXP04 on Seed Germination and Seedling Growth of Rice [J]. Crops, 2020, 36(6): 163-169.
[3] Lin Miao, Zhang Qiuzhi, Shi Liyu, Liu Bei, Wang Hongwu, Pan Jinbao. Genome-Wide Association Study of Digestibility of Straw in Maize [J]. Crops, 2020, 36(6): 23-29.
[4] Ren Yun, Liu Jing, Li Zhexin, Li Qiang. Root Morphology and Dry Matter Accumulation of Maize Seedlings in Response to Low Iron Stress [J]. Crops, 2020, 36(6): 69-79.
[5] Yan Xiaoguang, Du Yanwei, Li Hong, Dong Hongfen, Li Aijun, Wang Guoliang, Zhou Nan. Error Analysis of Moisture Content in Maize Seeds by Quick Water-Content Measuring Method [J]. Crops, 2020, 36(5): 170-173.
[6] Wu Qiong, Ding Kaixin, Yu Minglong, Huang Wenting, Zuo Guanqiang, Feng Naijie, Zheng Dianfeng. Effects of New Plant Growth Regulator B2 on Photosynthetic Fluorescence Characteristics and Yield of Maize [J]. Crops, 2020, 36(5): 174-181.
[7] Wu Weihua, Liu Jiayou, Yuan Liuzheng, Yan Haixia, Fu Jiafeng, Wang Huiqiang, Wang Rui, Li Teng, Liu Kang. Effects of High Temperature Stress at Booting Stage on Maize Hybrids [J]. Crops, 2020, 36(5): 59-64.
[8] Li Zhongnan, Wang Yueren, Zhang Yanhui, Wu Shenghui, Qu Haitao, Xu Zhengxue, Li Guangfa. Genetic Analysis of Super Multiple Ear Row Number in DH Line 15D969 of Maize [J]. Crops, 2020, 36(5): 88-92.
[9] Wang Li, Wang Zuoping, Zhang Zhongbao, Bai Ling, Wu Zhongyi. Screening of Strongly Expressed Promoters in Immature Maize Kernels [J]. Crops, 2020, 36(4): 114-120.
[10] Li Qiang, Kong Fanlei, Yuan Jichao. Effects of Interannual Meteorological Factors on Maize Dry Matter Accumulation and Yield in the Hilly Area of Southwest China [J]. Crops, 2020, 36(4): 150-157.
[11] Zheng Fei, Wang Lixia, Liu Ruixiang, Kong Lingjie, Chen Yanping, Yuan Jianhua, Cui Yakun. Morphological and Physiological Differences of Maize Inbred Lines at Seedling Stage under Waterlogging Stress [J]. Crops, 2020, 36(4): 158-163.
[12] Yuan Wenya, Zhao Xiaolei, Zhou Xumei, Wang Lei, Peng Bo, Wang Yi. The Development of waxy Gene Function Marker and Its Application in Waxy Maize Breeding [J]. Crops, 2020, 36(4): 99-106.
[13] Song Qiulai, Wang Qi, Feng Yanjiang, Sun Yu, Zeng Xiannan, Lai Yongcai. Effects of Paddy-Upland Rotation and Straw Returning on Soil Related Enzyme Activities in Cold Region [J]. Crops, 2020, 36(3): 149-153.
[14] Liu Jian, Sun Bin, Zhang Weiqiang, Feng Xiaoxi, Zhang Jiyang, Ning Dongfeng, Qin Anzhen, Liu Zhandong, Qiao Miao, Shen Hongli, Xu Yan. Effects of Chemical Regulating on Grain Harvest Quality and Water Use Efficiency in Summer Maize [J]. Crops, 2020, 36(3): 161-168.
[15] Li Ruijie,Tang Huihui,Wang Qingyan,Xu Yanli,Fang Mengying,Yan Peng,Dong Zhiqiang,Zhang Fenglu. Effects of 5- Aminolevulinic Acid and Ethylene Compounds on Photosynthetic Characteristics and Yield of Spring Maize in Northeast China [J]. Crops, 2020, 36(2): 125-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!