Crops ›› 2020, Vol. 36 ›› Issue (3): 161-168.doi: 10.16035/j.issn.1001-7283.2020.03.025

Previous Articles     Next Articles

Effects of Chemical Regulating on Grain Harvest Quality and Water Use Efficiency in Summer Maize

Liu Jian1,2, Sun Bin1, Zhang Weiqiang2,3(), Feng Xiaoxi4, Zhang Jiyang2, Ning Dongfeng2, Qin Anzhen2, Liu Zhandong2, Qiao Miao1, Shen Hongli1, Xu Yan1   

  1. 1Xuchang Experiment and Extension Station of Farmland Water Conservancy, Xuchang 461000, Henan, China
    2Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, Henan, China
    3Henan Institute of Science and Technology for Development, Zhengzhou 450000, Henan, China
    4Zhumadian Academy of Agricultural Sciences, Zhumadian 463000, Henan, China
  • Received:2019-10-08 Revised:2019-12-12 Online:2020-06-15 Published:2020-06-10
  • Contact: Weiqiang Zhang E-mail:zmaizer@163.com

Abstract:

The effects of chemical regulating on water use efficiency (WUE) and grain harvest quality in summer maize were investigated under different irrigation treatments. Two popular maize varieties (Denghai 605 and Yudan 9953) were selected as experimental materials. Meanwhile, two factors, irrigation methods and plant growth regulator scheduling patterns were set. Plant growth regulator treatments included 8-9 leaves spraying regulator (Duntianbao, HK) and Control i.e. spray the same amount of water (CK). Irrigation treatments were comprised of 25mm (W1), 45mm (W2), 65mm (W3). The fixed irrigation was started when the soil moisture reached 70% field capacity and randomized complete block design was adopted. The results showed that compared to CK, the HK treatment decreased the mean of bare tip length and total loss rate by 12.08% and 7.78%, in contrast, increased 100-kernel weight and WUEY by 4.88% and 3.65%, respectively. Irrigation had extremely significant effects on yield, WUEY, total loss mass and total loss rate. Chemical regulation obviously interacted with irrigation to control grain broken rate of Yudan 9953. There is positive significant correlation between Grain moisture content and evapotranspiration with the correlation coefficients of 0.885 (Denghai 605) and 0.872 (Yudan 9953) as well as significantly or extremely significantly correlated with soil water content of 0.527 (Denghai 605) and 0.683 (Yudan 9953). It was concluded that 8-9 leaves spraying regulator, irrigating when the soil moisture content reached 65%-70% field capacity and spraying irrigation 45mm were the optimal recommendation of summer maize for the well-irrigated regions of Huang-Huai Plain.

Key words: Plant growth regulator, Sprinkler, Maize, Water consumption rate, Grain moisture content

Fig.1

Daily precipitation and temperature variation in test area"

Fig.2

Soil moisture content dynamic changes of different treatments at different growth stages"

Table 1

Effects of plant growth regulator and different water treatments on grain yield and grain components"

植物生长调节剂
Plant growth regulator
灌水量
Irrigation
登海605 Denghai 605 豫单9953 Yudan 9953
穗长
Ear length
(cm)
穗粗
Ear diameter
(cm)
秃尖长
Bare tip
length (cm)
百粒重
100-kernel
weight (g)
产量
Yield
(kg/hm2)
穗长
Ear length
(cm)
穗粗
Ear diameter
(cm)
秃尖长
Bare tip
length (cm)
百粒重
100-kernel
weight (g)
产量
Yield
(kg/hm2)
HK W1 19.8±0.4d 3.27±0.06c 1.25±0.05d 28.13±0.72d 9 652±109d 16.5±0.3b 4.11±0.08b 0.39±0.03c 24.1±0.8c 9 085±156c
W2 21.9±0.2a 4.14±0.10a 1.05±0.08e 34.47±0.41a 11 484±320a 17.3±0.2a 4.25±0.06a 0.31±0.01c 29.5±0.6a 10 773±383a
W3 20.6±0.2c 4.10±0.05ab 1.51±0.04b 32.43±0.90bc 10 343±248c 17.0±0.2a 4.01±0.02c 0.51±0.04b 28.2±1.1ab 9 683±216b
CK W1 19.0±0.3e 3.25±0.03c 1.43±0.07c 26.60±1.36e 9 453±112d 16.5±0.4b 4.04±0.03bc 0.49±0.02b 21.7±0.9d 8 887±317c
W2 21.5±0.3b 4.11±0.09ab 1.22±0.05d 33.13±0.69ab 11 002±241b 16.9±0.2ab 4.19±0.05a 0.35±0.05c 28.7±1.4a 10 502±220a
W3 19.8±0.2d 4.08±0.06b 1.63±0.04a 31.53±0.64c 10 271±421c 17.3±0.1a 3.97±0.10c 0.59±0.02a 26.9±0.7b 9 803±412b
植物生长调节剂
Plant growth regulator (R)
102.86** 6.78** 301.54** 10.68** 6.16* 0.01 6.62* 12.14** 14.01** 1.41
灌水量Irrigation (I) 408.94** 4 421.70** 792.43** 99.33** 93.59** 13.98** 41.52** 38.13** 86.64** 93.85**
植物生长调节剂×灌水量R×I 3.17 0.02 5.60 0.24 1.43 4.24* 0.13 0.81 1.36 1.48

Table 2

The effects of plant growth regulator and different water treatments on the quality of mechanical grain harvest of maize"

植物生长调节剂
Plant growth regulator
灌水量
Irrigation
登海605 Denghai 605 豫单9953 Yudan 9953
籽粒破碎率
Grain broken
rate (%)
杂质率
Impurity rate
(%)
总损失量
Total loss mass
(kg/hm2)
总损失率
Total loss rate
(%)
籽粒破碎率
Grain broken
rate (%)
杂质率
Impurity rate
(%)
总损失量
Total loss mass
(kg/hm2)
总损失率
Total loss rate
(%)
HK W1 4.22±0.3c 1.64±0.6b 281±13cd 2.91±0.16b 3.63±0.10d 1.02±0.09e 196±17bc 2.15±0.17a
W2 5.46±0.4b 2.56±0.3a 265±19d 2.31±0.15d 4.18±0.22c 1.35±0.11c 178±12c 1.65±0.10b
W3 5.61±0.3b 3.10±0.3a 313±12ab 3.03±0.24ab 4.52±0.15b 1.59±0.13b 210±9ab 2.17±0.21a
CK W1 4.17±0.2c 1.82±0.2b 299±21bc 3.16±0.21ab 3.59±0.31d 1.07±0.07d 204±15b 2.29±0.22a
W2 5.09±0.3b 3.05±0.3a 289±12bcd 2.62±0.10c 4.12±0.25c 1.39±0.10c 192±11bc 1.83±0.18b
W3 6.27±0.5a 2.72±0.4a 327±10a 3.19±0.08a 4.76±0.19a 1.65±0.03a 229±13a 2.33±0.16a
植物生长调节剂
Plant growth regulator (R)
0.18 0.37 8.30* 13.91** 2.46 14.50** 6.85* 7.56*
灌水量Irrigation (I) 51.30** 20.50** 16.15** 39.53** 376.80** 601.70** 15.30** 33.78**
植物生长调节剂×灌水量R×I 3.20 2.16 0.20 0.51 10.38** 0.13 0.39 0.05

Table 3

Water use efficiency of maize among different treatments"

植物生长调节剂
Plant growth regulator
灌水量
Irrigation
登海605 Denghai 605 豫单9953 Yudan 9953
耗水量
Water consumption (mm)
产量水分利用效率
Yield water use efficiency (kg/m3)
叶片水分利用效率
Leaf water use efficiency
(μmol/mmol)
籽粒含水率
Grain moisture content (%)
耗水量
Water consumption (mm)
产量水分利用效率
Yield water use efficiency(kg/m3)
叶片水分利用效率
Leaf water use efficiency
(μmol/mmol)
籽粒含水率
Grain moisture content (%)
HK W1 337±11d 2.86±0.06bc 5.6±0.2a 23.3±0.6d 296±18d 3.07±0.05b 6.2±0.3a 20.4±1.2c
W2 374±9c 3.07±0.04a 5.1±0.1b 25.4±0.8c 330±12c 3.26±0.06a 5.7±0.1bc 23.0±0.3ab
W3 389±5b 2.66±0.06de 5.2±0.1b 27.5±0.9a 360±8a 2.68±0.14d 5.3±0.1c 24.0±0.5a
CK W1 341±13d 2.78±0.09cd 5.5±0.1a 24.2±0.6d 303±11d 2.93±0.03c 6.0±0.2ab 21.0±0.9c
W2 378±4c 2.91±0.06b 4.9±0.1b 26.2±1.0bc 332±14c 3.16±0.09ab 5.6±0.2bc 22.5±0.2b
W3 397±2a 2.59±0.10e 5.0±0.2b 27.3±0.4ab 376±20a 2.61±0.09d 5.3±0.1c 23.9±0.6a
植物生长调节剂
Plant growth regulator (R)
18.72** 11.22** 1.90 2.55 6.00* 8.85* 0.40 1.40
灌水量Irrigation (I) 694.10** 43.54** 13.50** 47.58** 145.50** 90.23** 17.08** 81.20**
植物生长调节剂×灌水量R×I 1.03 0.72 0.02 1.57 1.50 0.20 0.13 0.70

Table 4

Pearson correlation between grain moisture content and other characteristics of maize"

参数
Variable
籽粒含水率
Grain moisture content
籽粒破碎率
Grain broken rate
土壤含水率
Soil moisture content
耗水量
Water consumption
杂质率
Impurity rate
总损失量
Total loss mass
总损失率
Total loss rate
籽粒破碎率Grain broken rate 0.771**(0.891**
土壤含水率Soil moisture content 0.527*(0.683** -0.508*(0.587*
耗水量Water consumption 0.885**(0.872** -0.937**(0.906** -0.604**(0.600**
杂质率Impurity rate 0.772**(0.901** -0.655**(0.759** -0.378(0.690** 0.702**(0.823**
总损失量Total loss mass 0.490*(0.290) -0.441(0.468) -0.175(0.226) 0.541*(0.528* -0.210(0.312)
总损失率Total loss rate 0.083(-0.072) -0.017(0.051) -0.043(0.076) 0.102(0.126) -0.187(-0.082) -0.837**(0.867**
产量Yield 0.385(0.476* -0.515*(0.463) -0.265(0.127) 0.415(0.395) -0.537*(0.515* -0.324(-0.388) -0.786**(-0.794**

Fig.3

The relationship between water consumption and grain moisture content of maize DH605 and YD9953 represent Denghai 605 and Yudan 9953, respectively, the same below"

Fig.4

The relationship between soil moisture content and grain moisture content of maize"

[1] 赵久然, 王荣焕 . 中国玉米生产发展历程、存在问题及对策. 中国农业科技导报, 2013,15(3):1-6.
[2] Zhao J, Yang X, Sun S . Constraints on maize yield and yield stability in the main cropping regions in China. European Journal of Agronomy, 2018,99:106-115.
doi: 10.1016/j.eja.2018.07.003
[3] Xu C L, Gao Y B, Tian B J , et al. Effects of EDAH,a novel plant growth regulator,on mechanical strength,stalk vascular bundles and grain yield of summer maize at high densities. Field crops Research, 2017,200:71-79.
doi: 10.1016/j.fcr.2016.10.011
[4] Niu J, Liu Q, Kang S Z , et al. The response of crop water productivity to climatic variation in the upper-middle reaches of the Heihe River basin,Northwest China. Journal of Hydrology, 2018,563:909-926.
doi: 10.1016/j.jhydrol.2018.06.062
[5] 高尚, 明博, 慕兰 , 等. 黄淮海平原南部玉米机械粒收现状及技术应用前景的生态分析——以河南省为例. 玉米科学, 2019,27(2):129-137.
[6] Cohen I, Netzer Y, Sthein I , et al. Plant growth regulators improve drought tolerance,reduce growth and evapotranspiration in deficit irrigated Zoysia japonica under field conditions. Plant Growth Regulation, 2019,88:9-17.
doi: 10.1007/s10725-019-00484-4
[7] 苑学亮 . 不同化学及营养调控措施对作物生长及水肥利用效率的影响. 杨凌:西北农林科技大学, 2009.
[8] 鱼彩彦 . 氮肥及化学调控对旱地冬小麦生长及水肥利用效率的影响. 杨凌:西北农林科技大学, 2012.
[9] Yu H Y, Zhang Y S, Xie Y , et al. Ethephon improved drought tolerance in maize seedlings by modulating cuticular wax biosynthesis and membrane stability. Journal of Plant Physiology, 2017,214:123-133.
doi: 10.1016/j.jplph.2017.04.008
[10] 李少昆, 王克如, 杨利华 , 等. 河北夏播区玉米机械粒收质量及影响因素研究. 玉米科学, 2019,27(2):120-128.
[11] 黄兆福, 明博, 王克如 , 等. 辽河流域玉米籽粒脱水特点及适宜收获期分析. 作物学报, 2019,45(6):922-931.
doi: 10.3724/SP.J.1006.2019.83062
[12] Gambin B L, Borras L, Otegui M E . Kernel water relations and duration of grain filling in maize temperate hybrids. Field Crops Research, 2007,101:1-9.
doi: 10.1016/j.fcr.2006.09.001
[13] 王克如, 李少昆 . 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017,50(11):2027-2035.
doi: 10.3864/j.issn.0578-1752.2017.11.008
[14] 徐田军, 吕天放, 陈传永 , 等. 种植密度和植物生长调节剂对玉米茎秆性状的影响及调控. 中国农业科学, 2019,52(4):629-638.
doi: 10.3864/j.issn.0578-1752.2019.04.005
[15] 任红, 周培禄, 赵明 , 等. 不同类型化控剂对春玉米产量及生长发育的调控效应. 玉米科学, 2017,25(2):81-85.
[16] 李少昆, 王克如, 王立春 , 等. 吉林玉米机械粒收质量影响因素研究及品种筛选. 玉米科学, 2018,26(4):55-62.
[17] 叶德练, 王玉斌, 周琳 , 等. 乙烯利和氮肥对夏玉米氮素吸收与利用及产量的调控效应. 作物学报, 2015,41(11):1701-1710.
[18] 李东, 赵晶晶, 郑殿峰 , 等. 植物生长调节剂对春玉米子粒建成及产量的影响. 玉米科学, 2016,24(6):47-54.
[19] 刘守阳, 汪有科, 赵霞 , 等. 植物生长调节剂对梨枣节水增产效益的影响. 西北农林科技大学学报(自然科学版), 2012,40(12):184-190.
[20] Hutsch B W, Schubert S . Maize harvest index and water use efficiency can be improved by inhibition of gibberellin biosynthesis. Journal of Agronomy and Crop Science, 2017,204(2):209-218.
doi: 10.1111/jac.2018.204.issue-2
[21] 于文颖, 纪瑞鹏, 冯锐 , 等. 不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应. 生态学报, 2015,35(9):2902-2909.
doi: 10.5846/stxb201306101632
[22] Zhao W, Sun Y, Kjelgren R , et al. Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit. Acta Physiologiae Plantarum, 2015,37(1):1704.
doi: 10.1007/s11738-014-1704-8
[23] 周怀林, 周广胜 . 玉米叶片水分利用效率的保守性. 生态学报, 2019,39(6):2156-2167.
doi: 10.5846/stxb201804020736
[24] Lawson T, Blatt M R . Stomatal size,speed,and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology, 2014,164(4):1556-1570.
doi: 10.1104/pp.114.237107
[25] 王克如, 李少昆 . 玉米机械粒收破碎率研究进展. 中国农业科学, 2017,50(11):2018-2026.
doi: 10.3864/j.issn.0578-1752.2017.11.007
[26] Gu R L, Huang R, Guang Y J , et al. Effect of mechanical threshing on damage and vigor of maize seed threshed at different moisture contents. Journal of Integrative Agriculture, 2019,18(7):1571-1578.
doi: 10.1016/S2095-3119(18)62026-X
[27] 柴宗文, 王克如, 郭银巧 , 等. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017,50(11):2036-2043.
doi: 10.3864/j.issn.0578-1752.2017.11.009
[28] Maiorano A, Mancini M C . Water relationships and temperature interactions in maize grain during maturation. Field Crops Research, 2010,119(2/3):304-307.
doi: 10.1016/j.fcr.2010.07.019
[29] Zhang Y, Wang J D, Gong S H , et al. Effects of film mulching on evapotranspiration,yield and water use efficiency of a maize field with drip irrigation in Northeastern China. Agricultural Water Management, 2018,205:90-99.
doi: 10.1016/j.agwat.2018.04.029
[30] 姬祥祥, 徐芳, 刘美含 , 等. 土壤水基质势膜下滴灌春玉米生长和耗水特性研究. 农业机械学报, 2018,49(11):230-239.
[1] Song Qiulai, Wang Qi, Feng Yanjiang, Sun Yu, Zeng Xiannan, Lai Yongcai. Effects of Paddy-Upland Rotation and Straw Returning on Soil Related Enzyme Activities in Cold Region [J]. Crops, 2020, 36(3): 149-153.
[2] Li Ruijie,Tang Huihui,Wang Qingyan,Xu Yanli,Fang Mengying,Yan Peng,Dong Zhiqiang,Zhang Fenglu. Effects of 5- Aminolevulinic Acid and Ethylene Compounds on Photosynthetic Characteristics and Yield of Spring Maize in Northeast China [J]. Crops, 2020, 36(2): 125-133.
[3] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize [J]. Crops, 2020, 36(2): 140-146.
[4] Zhou Wei,Cui Fuzhu,Duan Hongkai,Hao Guohua,Yang Hui,Liu Ruirui. Effects of Sowing Date on Yield and Quality of Waxy Maize [J]. Crops, 2020, 36(2): 156-161.
[5] Wei Xiaoyi,Wang Jiamu,Ma Yi,Ma Junfeng,Hong Defeng,Wei Feng. Identification and Principal Component Analysis of Maize Combinations Suitable for Mechanical Grain Harvesting [J]. Crops, 2020, 36(2): 48-53.
[6] Sun Ruidong,Zang Zhenyuan,Ci Jiabin,Yang Wei,Ren Xuejiao,Jiang Liangyu,Yang Weiguang. Identification of Resistance and Analysis of Resistance Source for Exserohilum turcicum in Maize Inbred Lines [J]. Crops, 2020, 36(2): 65-70.
[7] Xu Hanlin,Liu Yao,Yuan Xiaofeng,Pan Jie,Weng Qiaoyun,Lü Aizhi,Liu Yinghui. Projection of Climate Change on the Planting Distribution of Silage Maize in Northwest Hebei Province [J]. Crops, 2020, 36(1): 124-129.
[8] Si Leiyong,Xia Zhenqing,Jin Yan,Chen Guangzhou,Wang Guangfu,Lu Haidong,Xue Jiquan. Impacts of Different Mulching Patterns on Root-Shoot Growth of Spring Maize and Water Use Efficiency in Dry Land [J]. Crops, 2020, 36(1): 146-153.
[9] Bai Lanfang,Zhang Xiangqian,Wang Rui,Wang Ya'nan,Ye Xuesong,Wang Yufen,Li Juan,Zhang Dejian. Study on Photosynthetic Characteristics, Yield and Quality of Different Maize Varieties [J]. Crops, 2020, 36(1): 154-160.
[10] Chen Zongpei,Xue Jiaxin,Li Ben,Wang Guiyan. Response of Photosynthetic Characteristics and Canopy Micro-Environment to Planting Density and Row Spacing of Maize (Zea Mays L.) [J]. Crops, 2020, 36(1): 179-186.
[11] Li Zhongnan,Zhang Xiaohui,Wang Yueren,Zhang Yanhui,Wu Shenghui,Xu Zhengxue,Li Guangfa. Inheritance of Seed Dormancy in F1 of DH Lines of Maize [J]. Crops, 2020, 36(1): 194-198.
[12] Zhang Xin,Cao Liru,Wei Liangming,Zhang Qianjin,Zhou Ke,Wang Zhenhua,Lu Xiaomin. Expression Analysis and Interaction Prediction of Maize Glucose Transporter Gene ZmGLUT-1 [J]. Crops, 2020, 36(1): 22-28.
[13] Tan Youbin. Suggestion and Discussion of Maize Breeding in West Africa Assistance Agricultural Project [J]. Crops, 2020, 36(1): 9-12.
[14] Diao Shengpeng,Gao Riping,Gao Yu,Ren Yongfeng,Zhao Peiyi,Yuan Wei,Gao Xuefeng. Effects of Straw Returning on Soil Hydrothermal and Yield of Maize in Loess Plateau of Inner Mongolia [J]. Crops, 2019, 35(6): 83-89.
[15] Zhuang Kezhang,Wu Ronghua,Zhang Chunyan,Xu Lihua,Xu Xiangbo,Ding Yi,Wang Zhennan. Effects of Density on Yield and Nutritional Value of Different Types of Silage Maize [J]. Crops, 2019, 35(6): 140-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!