Crops ›› 2021, Vol. 37 ›› Issue (2): 96-100.doi: 10.16035/j.issn.1001-7283.2021.02.013

;

Previous Articles     Next Articles

Effects of Chemical Regulation on Wheat Yield and Quality under Different Soil Conditions

Wang Yujiao1,2(), Cao Qi1, Chang Xuhong1, Wang Demei1, Wang Yanjie1, Yang Yushuang1, Zhao Guangcai1(), Shi Shubing2()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
  • Received:2020-12-04 Revised:2021-01-16 Online:2021-04-15 Published:2021-04-16
  • Contact: Zhao Guangcai E-mail:1120290382@qq.com;zhaogc1@163.com;shubshi@sina.com

Abstract:

To explore the regulation effects of the combination of different soil conditions and different chemical control agents on the yield and quality of wheat, the effects of spraying water (B1), chlormequat chloride (B2), and duntianbao (B3) at early jointing stage on grain yield and quality of Nongmai No.5 were studied in black soil (A1) and alluvial soil (A2) through potted planting. The results showed that under the same chemical control treatments, plant height, spike length, grain number per spike, 1000-grain weight, grain yield, and protein yield showed A1>A2, and the grain yield and total protein yield under the conditions of fluvo-aquic soil were 56.0% and 55.1% lower than black soil. The contents of total protein and its components in wheat showed A2>A1. Under black soil conditions, the grain yield and number of grains per spike sprayed with chlormequat chloride reached the maximum, and the plant height and spike length sprayed by duntianbao reached the maximum. Under the conditions of alluvial soil, the total protein content of wheat grains treated with chemical control agents was significantly higher than that of the control group, among which the contents of albumin, globulin, and gliadin were B2>B3>B1, and the difference was significant. The combination of different soil types using corresponding chemical regulation is an effective way for high quality and high yield of wheat. Therefore, the combined use of chemical control agents under black soil conditions could significantly increase wheat yield and under the condition of alluvial soil, the combined use of chemical control agents could significantly improve wheat quality.

Key words: Chemical regulation, Wheat, Soil type, Agronomic traits, Protein content

Table 1

Basic nutrients of soil tested"

土壤
类型
Soil
type
有机质
Organic matter
(g/kg)
全氮
Total N (g/kg)
碱解氮
Alkali-
hydrolyable
N (mg/kg)
速效磷
Available
P2O5
(mg/kg)
速效钾
Available
K2O
(mg/kg)
A1 58.7 3.3 276.9 38.1 228.0
A2 18.5 0.8 66.0 9.7 102.0

Table 2

Wheat plant traits and grain yield in different soil conditions"

土壤类型
Soil type
株高
Plant height (cm)
穗长
Ear length (cm)
穗粒数
Grains per spike
千粒重
1000-grain weight (g)
产量(g/盆)
Yield
(g/pot)
A1 47.10aA 6.01aA 23.50aA 37.26aA 6.89aA
A2 32.65bB 5.29bB 15.22bB 26.00bB 3.03bB

Fig.1

Effects of different soil conditions on wheat grain protein content"

Fig.2

Effects of different soil conditions on wheat grain protein yield"

Table 3

Effects of different chemical control treatments on wheat plant traits and grain yield"

处理
Treatment
株高
Plant height
(cm)
穗长
Ear length
(cm)
穗粒数
Grains per spike
千粒重
1000-grain
weight (g)
产量(g/盆)
Yield
(g/pot)
B1 45.87aA 5.86aA 19.24abA 33.37aA 4.87aA
B2 29.06bB 5.33aA 20.66aA 29.37bA 5.18aA
B3 44.76aA 5.76aA 18.18bA 32.16abA 4.84aA

Fig.3

The effects of different chemical control treatments on wheat grain protein content"

Fig.4

The effects of different chemical control treatments on wheat grain protein yield"

Table 4

Effects of different treatment combinations on wheat plant traits and grain yield"

处理
Treatment
株高
Plant height
(cm)
穗长
Ear length
(cm)
穗粒数
Grains per
spike
千粒重
1000-grain
weight (g)
产量(g/盆)
Yield
(g/pot)
A1B1 52.08aA 5.74aAB 21.53bB 38.24aA 6.20bA
A1B2 35.70bB 6.13aA 26.32aA 36.15aA 7.70aA
A1B3 53.65aA 6.16aA 22.67bAB 37.39aA 6.77abA
A2B1 39.67bB 5.98aA 16.96cC 28.50bB 3.54cB
A2B2 22.41cC 4.53bB 15.00cdC 22.58cC 2.65cB
A2B3 35.86bB 5.37abAB 13.69dC 26.92bBC 2.90cB

Table 5

Effects of different treatment combinations on wheat grain protein content %"

处理
Treatment
总蛋白
Total protein
清蛋白
Albumin
球蛋白
Globulin
醇溶蛋白
Gliadin
谷蛋白
Glutenin
A1B1 18.24cB 3.80bcdAB 1.92dC 5.44bB 5.97aA
A1B2 18.67bcB 4.16abcAB 2.16bBC 5.56bB 6.07aA
A1B3 18.41cB 3.41dB 1.97cdC 5.38bB 6.02aA
A2B1 18.30cB 3.60cdB 2.13bcBC 5.31bB 6.09aA
A2B2 19.70aA 4.58aA 2.43aA 6.34aA 6.24aA
A2B3 19.08bAB 4.22abAB 2.28abAB 5.69bB 6.39aA

Table 6

Effects of different treatment combinations on wheat grain protein yield g/盆 g/pot"

处理
Treatment
总蛋白
Total protein
清蛋白
Albumin
球蛋白
Globulin
醇溶蛋白
Gliadin
谷蛋白
Glutenin
A1B1 1.13bB 0.23bB 0.12bBC 0.43aA 0.37bA
A1B2 1.44aA 0.32aA 0.17aA 0.49aA 0.47aA
A1B3 1.25bAB 0.23bB 0.13bAB 0.44aA 0.41abA
A2B1 0.65cC 0.13cC 0.08cCD 0.24bB 0.21cB
A2B2 0.52cC 0.12cC 0.07cD 0.20bB 0.17cB
A2B3 0.55cC 0.12cC 0.07cD 0.22bB 0.19cB
[1] 赵广才. 北方冬麦区小麦高产高效栽培技术. 作物杂志, 2008(5):91-92.
[2] 豆利岭, 刘庆峰, 王宁, 等. 不同土壤和播种深度下稻秸淋洗对小麦出苗及生长发育的影响. 江苏农业科学, 2019,47(23):106-110.
[3] 魏鑫, 常旭虹, 王德梅, 等. 不同类型土壤对小麦籽粒产量和蛋白质含量的影响. 麦类作物学报, 2019,39(12):1494-1498.
[4] 李博, 常旭虹, 王德梅, 等. 不同土壤条件下追钾肥对小麦产量和品质的影响. 农业科技通讯, 2019(11):75-79.
[5] 周秋峰, 黄长志, 赵建国, 等. 土壤条件对小麦品质的影响概述. 农业科技通讯, 2014(8):163-165.
[6] 熊淑萍, 张娟娟, 杨阳, 等. 不同冬小麦品种在3种质地土壤中氮代谢特征及利用效率分析. 植物生态学报, 2013,37(7):601-610.
[7] 马瑞琦, 亓振, 常旭虹, 等. 化控剂对冬小麦植株性状及产量品质的调节效应. 作物杂志, 2018(1):133-140.
[8] 马少康, 李克民, 常旭虹, 等. 不同化控处理对中麦8号产量和品质的影响. 农业科技通讯, 2015(12):82-85.
[9] 郭建文, 田新会, 张舒芸, 等. 拔节期喷施矮壮素对小黑麦抗倒伏性及产量的影响. 甘肃农业大学学报, 2018,53(6):42-49.
[10] 张军, 高浪浪, 张梅娟. 矮壮素对小麦幼苗生长和光合生理特性的影响. 商洛学院学报, 2019,33(6):26-29.
[11] 张军, 方锦旗, 邵梦丽, 等. 不同浓度矮壮素对小麦幼苗生理特性的影响. 陕西农业科学, 2020,66(4):22-24.
[12] 汤海军, 周建斌, 王春阳. 矮壮素浸种对不同小麦品种萌发生长及水分利用效率的影响. 干旱地区农业研究, 2005(5):29-34.
[13] 薛志伟, 杨春玲, 董军红, 等. 植物生长调节剂对小麦群体性状和产量的影响. 山西农业科学, 2018,46(10):1634-1636,1684.
[14] 李争, 杜佳林, 刘强, 等. 叶面喷施吨田宝对冬小麦产量性状的影响. 天津农林科技, 2019(5):23-24.
[15] 张朋伟, 田国英, 田东良, 等. 吨田宝对冬小麦生长发育及产量的影响. 湖北农业科学, 2019,58(3):55-56,64.
[16] 张勉, 高志强, 孙敏, 等. 不同时期喷施吨田宝对旱地小麦农艺性状及产量的影响. 山西农业科学, 2017,45(3):415-419.
[17] 陆梅, 孙敏, 任爱霞, 等. 喷施叶面肥对旱地小麦生长的影响及与产量的关系. 作物杂志, 2018(4):121-125.
[18] 苏珮, 蒋纪云, 王春虎. 小麦蛋白质组分的连续提取分离法及提取时间的选择. 河南职技师院学报, 1993(2):1-4,19.
[19] 唐进, 林昌明, 吉剑, 等. 小麦不同生育时期喷施“吨田宝”效果分析. 农业科技通讯, 2012(12):57-61.
[20] 冯金凤, 赵广才, 张保军, 等. 化学调控对冬小麦产量、品质及旗叶部分生理指标的影响. 华北农学报, 2013,28(S1):142-146.
[21] 赵淑章, 季书勤, 王绍中, 等. 不同类型土壤与强筋小麦品质和产量的关系. 河南农业科学, 2004(7):52-53.
[22] 张艳华, 常旭虹, 王德梅, 等. 不同土壤条件下追施锌肥对小麦产量及品质的影响. 作物杂志, 2019(5):109-113.
[23] 王丽娜, 常旭虹, 王德梅, 等. 不同土壤条件下追施硼肥对小麦产量和品质的影响. 作物杂志, 2019(6):94-98.
[24] 朱英杰, 刘富启, 张燕, 等. 不同土壤条件下氮肥处理对小麦产量及品质的影响. 作物杂志, 2020(3):184-190.
[1] Liu Hongjie, Ren Dechao, Ge Jun, Zhang Suyu, Lü Guohua, He Xun. Effects of Accumulated Temperature and Planting Density on Pre-Winter Growth of Wheat [J]. Crops, 2024, 40(1): 141-147.
[2] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Wang Yanjie, Zhao Guangcai. Effects of Nitrogen Dressing Time and Proportion on Wheat Grain Filling and Its Physiological Mechanism [J]. Crops, 2024, 40(1): 174-179.
[3] Hao Xiaocong, Li Xinyu, Hou Qiling, Yang Jifang, An Chunhui, Wang Changhua, Ye Zhijie, Zhang Fengting. Effects of Nitrogen Application Rate on the Quality of Two-Line Hybrid Wheat [J]. Crops, 2024, 40(1): 187-192.
[4] Hao Yani, Pei Hongbin, Gao Zhenfeng, Zhang Yijun, Yang Zhenping. Effects of Bacillus vallismortis and Straw Replacing Phosphorus Fertilizer on Growth, Yield and Quality of Tartary Buckwheat [J]. Crops, 2024, 40(1): 204-213.
[5] Zhang Lu, Li Dengming, Zhai Xiaoyu, Wu Junying, Gao Shihua, Zhao Yufei. Differences in Agronomic and Quality Traits of Oat at Cutting Time and Their Relationships with Regeneration Performance [J]. Crops, 2024, 40(1): 220-228.
[6] Sun Yuantao, Long Wenjing, Li Yuan, Liu Tianpeng, Zhao Ganlin, Ding Guoxiang, Ni Xianlin. Genetic Diversity Analysis of 45 Glutinous Sorghum Germplasms Based on Major Agronomic Traits and SSR Markers [J]. Crops, 2024, 40(1): 57-64.
[7] Lü Baolian, Yang Yuxin, Cui Licao, Shi Feng, Ma Liang, Kong Xiuying, Zhang Lichao, Ni Zhiyong. Identification of bHLH Family Transcription Factors of Wheat and Expression Analysis under Salt Stress [J]. Crops, 2024, 40(1): 65-72.
[8] Zhang Rong, Jiang Enxi, Chen Si, Yu Xurun, Chen Gang, Ran Liping, Xiong Fei. Study on the Grain Formation in Wheat Spike Regulated by Ethephon and 1-Methylcyclopropene [J]. Crops, 2023, 39(6): 101-107.
[9] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Zhao Guangcai. Response of Nitrogen Accumulation and Translocation after Anthesis in Strong Gluten Wheat to Nitrogen Topdressing Period and Proportion [J]. Crops, 2023, 39(6): 114-120.
[10] Liu Xiwei, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Impacts Mechanism of Drought and Heat Stress in the Middle and Late Growing Period on Wheat Grain Yield Formation Process and Mitigation Measures [J]. Crops, 2023, 39(6): 17-25.
[11] Chen Dan, Xiong Furong, Wu Shaoyun, Bai Xiaodong, Zhou Guoyan, Wu Xiaoyang, Cai Qing. Molecular Detection and Geographic Distribution of Stripe Rust Resistance Gene Loci in Yunnan Wheat Landraces [J]. Crops, 2023, 39(6): 41-46.
[12] Zhao Feng, Bao Qijun, Pan Yongdong, Liu Xiaoning, Zhang Huayu, Niu Xiaoxia. Comprehensive Evaluation of Genetic Diversity in 70 Barley Germplasms [J]. Crops, 2023, 39(6): 54-61.
[13] Wang Yifan, Ren Ning, Dong Xiangyang, Zhao Yanan, Ye Youliang, Wang Yang, Huang Yufang. Effects of Controlled-Release and Ordinary Urea on Wheat Yield, Nitrogen Absorption and Economic Benefit [J]. Crops, 2023, 39(5): 117-123.
[14] Yang Mei, Yang Weijun, Gao Wencui, Jia Yonghong, Zhang Jinshan. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Dry Matter Transport, Agronomic Characteristics and Yield of Winter Wheat in Irrigation Area [J]. Crops, 2023, 39(5): 138-144.
[15] Huang Jie, Ge Changbin, Wang Jun, Cao Yanyan, Qiao Jiliang, Liao Pingʼan, Song Danyang, Lu Wenying. Simulation Model of Relative Meteorological 1000-Grain Weight of Wheat of Luohe Based on Principal Component Regression [J]. Crops, 2023, 39(5): 212-218.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!