Crops ›› 2023, Vol. 39 ›› Issue (5): 138-144.doi: 10.16035/j.issn.1001-7283.2023.05.020

Previous Articles     Next Articles

Effects of Combined Application of Biochar and Nitrogen Fertilizer on Dry Matter Transport, Agronomic Characteristics and Yield of Winter Wheat in Irrigation Area

Yang Mei1(), Yang Weijun1(), Gao Wencui1, Jia Yonghong2, Zhang Jinshan1   

  1. 1College of Agriculture, Xinjiang Agricultural University/Xinjiang Engineering Technology Research Center of High-Quality Special Wheat Crops, Urumqi 830052, Xinjiang, China
    2Qitai Wheat Experiment Station of Xinjiang Academy of Agricultural Sciences, Qitai 831800, Xinjiang, China
  • Received:2022-03-25 Revised:2022-05-18 Online:2023-10-15 Published:2023-10-16

Abstract:

A randomized block design was adopted in the irrigated wheat area of northern Xinjiang in 2017, a total of six treatments including a single application of low nitrogen fertilizer (150kg/ha B0N1), a conventional fertilizer (300kg/ha, B0N2), a single application of biochar (3.0×104kg/ha, B1N0), combined application of biochar with low nitrogen fertilizer (B1N1), conventional nitrogen combined with biochar (B1N2), and no fertilizer control (B0N0) were set. The dry matter accumulation, plant height, internode length, yield and its components of winter wheat were measured to clarify the effects of combined application of biochar and nitrogen fertilizer on dry matter transport, agronomic properties and yield of winter wheat in northern Xinjiang irrigation area, so as to provide basis for rational application of biochar and nitrogen fertilizer in northern Xinjiang irrigation area and farmland yield increase. The results showed that compared with the B0N0, different fertilization measures could improve wheat yield. The indexes at pre-anthesis were the highest in B1N1 treatment; The yields of winter wheat increased by 32.76% and 49.03%, respectively at B1N1 and B1N2 treatments. An appropriate amount of biochar (3×104 kg/ha) and nitrogen fertilizer (150kg/ha) could initially achieve the purpose of increasing winter wheat yield and reducing nitrogen fertilizer application.

Key words: Biochar, Dry matter, Agronomic traits, Winter wheat, Yield

Table 1

Accumulation and distribution rate of dry matter in different organs of winter wheat under different fertilization patterns"

处理
Treatment
穗轴+颖壳Spike-stalk+glume 叶片+叶鞘+茎秆Leaf+stalk+stem 籽粒Grain
分配量Amount (g) 比例Rate (%) 分配量Amount (g) 比例Rate (%) 分配量Amount (g) 比例Rate (%)
B0N0 0.45±0.03c 13.88±0.87b 1.21±0.07b 36.90±0.14a 1.61±0.12bc 49.22±0.75a
B0N1 0.51±0.04bc 14.50±1.53ab 1.26±0.05ab 36.08±0.26a 1.74±0.18bc 49.41±1.48a
B0N2 0.65±0.02a 15.73±0.69a 1.37±0.05a 33.23±0.28b 2.11±0.06a 51.04±0.97a
B1N0 0.47±0.03c 14.68±0.65ab 1.17±0.03bc 36.51±0.37a 1.57±0.07bc 48.80±0.29a
B1N1 0.45±0.03c 15.04±0.24ab 1.06±0.03c 35.61±1.01ab 1.47±0.04c 49.35±0.79a
B1N2 0.58±0.01ab 15.00±0.54ab 1.39±0.03a 36.07±0.43a 1.88±0.05ab 48.93±0.71a

Table 2

Dry matter accumulation and transport of winter wheat in different fertilization patterns"

处理
Treatment
花前干物质转运量(株/g)
Amount of dry matter
translocation at pre-
anthesis (plant/g)
花前干物质转运率
Rate of dry matter
translocation at
pre-anthesis (%)
花前干物质对籽粒贡献率
Contribution rate of
dry matter to the grains at
pre-anthesis (%)
花后干物质同化量(株/g)
Amount of dry matter
assimilation at post-
anthesis (plant/g)
花后干物质对籽粒贡献率
Contribution rate of dry
matter to the grains at
post-anthesis (%)
B0N0 0.38±0.18a 23.82±6.25ab 24.88±7.84ab 1.23±0.38ab 75.12±7.84ab
B0N1 0.33±0.07a 20.91±2.37b 19.84±3.81b 1.41±0.36a 80.16±3.81a
B0N2 0.57±0.30a 28.45±6.05ab 27.76±9.36ab 1.53±0.41a 72.24±9.36ab
B1N0 0.49±0.10a 29.33±2.78ab 31.40±4.22ab 1.08±0.18ab 68.60±4.22ab
B1N1 0.64±0.03a 37.62±0.68a 43.53±1.02a 0.83±0.05b 56.47±1.02b
B1N2 0.35±0.15a 19.81±4.35b 18.66±4.70b 1.53±0.20a 81.34±4.70a

Fig.1

Plant height and stem base diameter of winter wheat under different fertilization methods Different small letters mean significant difference among treatments at 0.05 level"

Table 3

Stem length and spikelets number of winter wheat under different fertilization methods"

处理Treatment 茎长Stem length (cm) 穗长Spike length (mm) 总小穗数Number of spikelets 不孕小穗数Number of sterile spikelets
B0N0 67.82c 8.42d 20.07d 1.93a
B0N1 72.35b 8.85bc 20.80c 1.67b
B0N2 74.91ab 8.61bcd 21.40ab 1.40c
B1N0 69.13c 8.53cd 20.13d 1.33c
B1N1 73.67ab 8.95b 21.27b 1.33c
B1N2 75.14a 9.53a 21.67a 1.47bc
F B(生物炭) 6.95 1.87 5.33 2.22
N(氮肥) 114.91** 1.70 52.93* 0.37
B×N 0.25 6.85* 2.29 13.10*

Table 4

Internode length of main stem of winter wheat under different fertilization methods cm"

处理
Treatment
穗下茎长
Length of top first
internode
倒二节间长
Length of top
2nd internode
倒三节间长
Length of top
3rd internode
倒四节间长
Length of top
4th internode
倒五节间长
Length of top
5th internode
B0N0 27.16c 19.75c 12.68b 8.26a 4.17a
B0N1 26.06d 21.22b 13.60ab 7.23c 2.48d
B0N2 27.79b 22.66a 13.75ab 8.38a 3.91ab
B1N0 27.39bc 20.83b 12.94ab 7.63b 2.71cd
B1N1 26.32d 22.32a 13.14ab 8.29a 3.12cd
B1N2 28.59a 22.69a 13.81a 8.32a 3.22bc
F B(生物质炭) 5.36 4.31 0.05 0.06 0.67
N(氮肥) 39.20* 15.44 6.93 0.49 0.60
B×N 1.94 8.72** 0.57 38.38** 11.20**

Table 5

Internode thick of main stem of winter wheat under different fertilization methods mm"

处理
Treatment
穗下茎粗
Thick of top first
internode
倒二节间粗
Thick of top
2nd internode
倒三节间粗
Thick of top
3rd internode
倒四节间粗
Thick of top
4th internode
倒五节间粗
Thick of top
5th internode
B0N0 3.12a 3.91c 3.95b 3.60c 3.08d
B0N1 3.15a 3.95bc 4.1ab 3.88b 3.27bc
B0N2 3.18a 4.25a 4.24ab 4.09a 3.45a
B1N0 3.17a 4.12abc 4.20ab 4.02ab 3.23c
B1N1 3.27a 4.16ab 4.23ab 4.06ab 3.34b
B1N2 3.28a 4.19ab 4.44a 4.13a 3.49a
F B(生物质炭) 20.91* 1.80 27.73* 3.54 6.20
N(氮肥) 7.74 1.87 18.20 2.43 31.22*
B×N 0.14 1.95 0.11 4.51* 3.19

Table 6

Yield and its components under different fertilization patterns"

处理
Treatment
穗数
Spikes number (×104/hm2)
穗粒数
Grains number per spike
千粒重
1000-grain weight (g)
产量
Yield (kg/hm2)
收获指数
Harvest index
B0N0 487.33±10.83bc 32.78±1.16c 42.03±0.52d 6700.97±166.24c 0.49±0.01b
B0N1 562.33±44.72ab 32.71±1.48c 45.40±0.41b 8334.56±667.08b 0.45±0.01c
B0N2 416.00±19.86c 40.90±0.15a 47.79±0.32a 8132.95±397.14bc 0.46±0.01c
B1N0 567.00±2.65ab 33.65±0.77bc 43.93±0.29c 8380.19±175.29b 0.51±0.01b
B1N1 525.00±14.04ab 36.32±0.06b 46.69±0.50ab 8896.28±126.93ab 0.55±0.01a
B1N2 591.33±30.74a 36.21±1.51b 46.46±0.51ab 9986.36±291.54a 0.49±0.01b
[4] 孔丝纺, 姚兴成, 张江勇, 等. 生物质炭的特性及其应用的研究进展. 生态环境学报, 2015, 24(4):716-723.
doi: 10.16258/j.cnki.1674-5906.2015.04.025
[5] 张伟明, 孟军, 王嘉宇, 等. 生物炭对水稻根系形态与生理特性及产量的影响. 作物学报, 2013, 39(8):1445-1451.
[6] 刘明, 来永才, 李炜, 等. 生物炭对玉米物质生产及产量的影响. 作物杂志, 2015(3):133-138.
[7] 阚正荣, 马守田, 祁剑英, 等. 施用生物炭对冬小麦光合潜力和籽粒产量的影响. 麦类作物学报, 2019, 39(6):719-727.
[8] 张伟明, 管学超, 黄玉威, 等. 玉米芯生物炭对大豆的生物学效应. 农业环境科学学报, 2015, 34(2):391-400.
[9] Van Z L, Kimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 2010, 327(1):235-246.
doi: 10.1007/s11104-009-0050-x
[10] 刘卉, 周清明, 黎娟, 等. 生物炭施用量对土壤改良及烤烟生长的影响. 核农学报, 2016, 30(7):1411-1419.
doi: 10.11869/j.issn.100-8551.2016.07.1411
[11] 高海英, 何绪生, 陈心想, 等. 生物炭及炭基硝酸铵肥料对土壤化学性质及作物产量的影响. 农业环境科学学报, 2012, 31(10):1948-1955.
[12] Smith P. Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology, 2016, 22:1315-1324.
doi: 10.1111/gcb.13178 pmid: 26732128
[13] 吴崇书, 吴耀, 季淑枫, 等. 施用生物质炭对土壤肥力和作物生长的影响. 中国园艺文摘, 2014, 30(12):207-209.
[1] Chen W, Meng J, Han X, et al. Past, present, and future of biochar. Biochar, 2019, 1(1):75-87.
doi: 10.1007/s42773-019-00008-3
[2] Song D, Xi X, Huang S, et al. Short-term responses of soil respiration and c-cycle enzyme activities to additions of biochar and urea in a calcareous soil. PLoS ONE, 2016, 11(9):e161694.
[14] 董心亮, 林启美. 生物质炭对土壤物理性质影响的研究进展. 中国生态农业学报, 2018, 26(12):1846-1854.
[15] 张喜娟, 孟英, 唐傲, 等. 功能性材料生物炭的农田应用效应. 作物杂志, 2013(4):20-24.
[3] Ahmed H, El-Naggar, Usman A R A, et al. Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar. Chemosphere, 2015, 138:67-73.
doi: 10.1016/j.chemosphere.2015.05.052 pmid: 26037818
[16] 李艳春, 李兆伟, 林伟伟, 等. 施用生物质炭和羊粪对宿根连作茶园根际土壤微生物的影响. 应用生态学报, 2018, 29(4):1273-1282.
doi: 10.13287/j.1001-9332.201804.036
[17] 马艳, 王光飞. 生物炭防控植物土传病害研究进展. 中国土壤与肥料, 2014, 254(6):14-20.
[18] 张文玲, 李桂花, 高卫东. 生物质炭对土壤性状和作物产量的影响. 中国农学通报, 2009, 25(17):153-157.
[19] 高文翠, 杨卫君, 贺佳琪, 等. 生物炭添加对麦田土壤微生物群落代谢的影响. 生态学杂志, 2020, 39(12):3998-4004.
[20] 梁雪齐, 张锋, 陈猛, 等. 株、行距配置对南疆冬小麦干物质积累、转运及产量的影响. 西北农业学报, 2022(3):1-8.
[21] 梁传斌, 李建国, 沈枫, 等. 移栽密度和施用生物炭对水稻产量的影响. 中国土壤与肥料, 2021, 292(2):240-247.
[22] 陈军晓, 张保军, 张正茂, 等. 不同栽培模式对冬小麦干物质积累及籽粒灌浆特性的影响. 西北农业学报, 2017, 26(12):1776-1786.
[23] 田中伟, 王方瑞, 戴廷波, 等. 小麦品种改良过程中物质积累转运特性与产量的关系. 中国农业科学, 2012, 45(4):801-808.
doi: 10.3864/j.issn.0578-1752.2012.04.022
[24] 周玲, 王朝辉, 李富翠, 等. 不同产量水平旱地冬小麦品种干物质累积和转移的差异分析. 生态学报, 2012, 32(13):4123-4131.
[25] 刘璐, 王朝辉, 刁超朋, 等. 旱地不同小麦品种产量与干物质及氮磷钾养分需求的关系. 植物营养与肥料学报, 2018, 24 (3):599-608.
[26] 王月福, 于振文, 李尚霞, 等. 氮素营养水平对小麦开花后碳素同化、运转和产量的影响. 麦类作物学报, 2002, 22(2):55-59.
[27] 王希贤, 吴君, 李磊, 等. 生物炭和氮肥对沿海沙地鼓节竹笋生长和光合特性的效应. 福建农林大学学报(自然科学版), 2022, 51(2):217-223.
[28] 刘术均, 刘爱群, 惠成章. 生物炭处理对茄子生长和光合特性的影响. 辽宁农业科学, 2018(3):42-45.
[29] 薛丽华, 赵连佳, 陈兴武, 等. 施氮量对滴灌冬小麦光合特性、产量及氮素利用效率的影响. 中国农学通报, 2018, 34(10):11-16.
doi: 10.11924/j.issn.1000-6850.casb17030089
[30] 雷钧杰, 张永强, 赛力汗·赛, 等. 施氮量对滴灌冬小麦干物质积累、分配与转运的影响. 麦类作物学报, 2017, 37(8):1078-1086.
[31] 段云佳, 谭玲, 张巨松, 等. 施氮量对枣棉间作系统棉花干物质和氮素积累的影响. 植物营养与肥料学报, 2012, 18(6):153-160.
[32] 李朝苏, 汤永禄, 吴春, 等. 施氮量对四川盆地小麦生长及灌浆的影响. 植物营养与肥料学报, 2015, 21(4):873-883.
[33] 齐亚娟, 徐萍, 张正斌, 等. 耐盐小麦品种在干旱条件下的农艺性状分析. 中国生态农业学报, 2013, 21(12):1484-1490.
[34] 要燕杰, 高翔, 吴丹, 等. 小麦农艺性状与品质特性的多元分析与评价. 植物遗传资源学报, 2014, 15(1):38-47.
[35] Devereux R C, Sturrock C J, Mooney S J. The effects of biochar on soil physical properties and winter wheat growth. Royal Society of Edinburgh Scotland Foundation, 2012, 103(1):13-18.
[36] Calabrese E J, Blain R B. Hormesis and plant biology. Environmental Pollution, 2009, 157(1):42-48.
doi: 10.1016/j.envpol.2008.07.028 pmid: 18790554
[37] 孙爱华, 华信, 叶晓思, 等. 生物炭与尿素混合施肥模式对节水灌溉水稻生长及产量的影响研究. 中国农村水利水电, 2016(8):88-92.
[38] 谢迎新, 刘宇娟, 张伟纳, 等. 潮土长期施用生物炭提高小麦产量及氮素利用率. 农业工程学报, 2018, 34(14):115-123.
[39] 李培培, 仝昊天, 翟庆慧, 等. 不同保水措施对砂质潮土水分、微生物量及小麦产量的影响. 中国土壤与肥料, 2019(4):78-83.
[40] Tammeorg P, Simojoki A, Mkel P, et al. Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil Properties and yield formation of wheat,turnip rape and faba bean. Plant and Soil, 2014, 374(1/2):89-107.
doi: 10.1007/s11104-013-1851-5
[41] 刘杰云, 邱虎森, 张文正, 等. 灌溉方式及生物质炭对冬小麦产量及水肥利用效率的影响. 灌溉排水学报, 2021, 40(6):59-65.
[42] Lehmann J, Pereira D S J, Steiner C, et al. Nutrient availability and leaching in all archaeological anthrosol and a ferralsol of the central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 2003, 249:343-357.
doi: 10.1023/A:1022833116184
[43] 窦森, 周桂玉, 杨翔宇, 等. 生物质炭及其与土壤腐殖质碳的关系. 土壤学报, 2012, 49(4):796-802.
[44] 谢祖彬, 刘琦, 许燕萍, 等. 生物炭研究进展及其研究方向. 土壤, 2011, 43(6):857-861.
[45] 温馨, 陈效民, 郭碧林, 等. 生物质炭添加对红壤性水稻土重金属有效性及土壤质量的影响. 生态学杂志, 2020, 39(4):1183-1190.
[46] 孙爱华, 华信, 朱士江. 生物炭对土壤养分及水分的影响. 安徽农业科学, 2015, 43(8):64-66,91.
[1] Wang Zhenlong, Su Cuicui, Zhou Qi, Deng Chaochao, Zhou Yanfang. The Effects of Reducing Nitrogen Fertilizer and Applying Organic Fertilizer on the Yield, Quality, and Soil Quality of Helianthus tuberosus L. [J]. Crops, 2023, 39(5): 104-109.
[2] Liu Yan, Qu Hang, Xing Yuehua, Wang Xiaohui, Gong Liang. Effects of New Types of Nitrogen Fertilizer on Rice Growth, Nitrogen Use Efficiency and Economic Benefit [J]. Crops, 2023, 39(5): 110-116.
[3] Fang Wenying, Zhu Defeng, Huai Yan, Chen Jiaqi, Chen Huizhe, Wang Yaliang. Analysis on the Effects of Precision Drill Sowing in Machine Transplanting for Single-Season Hybrid Rice to Improve Yield of Sparsely Planted Population [J]. Crops, 2023, 39(5): 124-130.
[4] Liu Qiuyuan, Li Meng, Gao Yangguang, Shi Mengyu, Wei Yunfei, Ji Xin, Li Li, Liu Yali, Wang Fujuan. Effects of Different Nitrogen Fertilization Patterns on Yield and Quality of Conventional Japonica Rice under Reduced Nitrogen [J]. Crops, 2023, 39(5): 131-137.
[5] Zhang Rong, Chen Xiaowen, Lu Ping, You Yanrong, Zhou Delu, Li Deming. Effects of Different Mulching Modes on Soil Moisture, Temperature and Yield of Potato in Dry Land [J]. Crops, 2023, 39(5): 145-150.
[6] Wu Xueqin, Liu Kaiyu, Han Chunhua, Alimujiang·Kelaimu , Cui Yannan, Li Jiangyu, Ma Chunmei, Zhong Wenfan, Zhao Qiang. Effects of 14% Thiobenzene-Dioxalon on Defoliation Ripening, Yield and Quality of Cotton [J]. Crops, 2023, 39(5): 164-169.
[7] Guan Qinglin, Piao Shengyuan, Zhang Siwei, Wang Jun, Lei Yunkang, Zhong Qiu, Zhao Mingqin. Effects of Combined Application of Medium-Trace Elements on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism, Yield and Quality of Cigar Tobacco [J]. Crops, 2023, 39(5): 187-196.
[8] Ling Yibo, Wang Binjie, Hu Yimin, Heinar·Madithermic mann, Chen Nianlai. Responses of Dry Matter Translocation and Yield Formation to Planting Density and Row Spacing of Sunflower [J]. Crops, 2023, 39(5): 197-203.
[9] Tian Xiaoqin, Wang Dan, Li Zhuo, Liu Yonghong, Li Wei. Effects of Ridge and Mulching on Yield and Water Use Efficiency of Rapeseed [J]. Crops, 2023, 39(5): 204-211.
[10] Yi Bing, Liu Jingang, Song Dianxiu, Wang Dexing, Zhao Mingzhu, Liu Xiaohong, Sun Enyu, Cui Liangji. Study on Land Productivity and Interspecific Competition of Sunflower and Millet Intercropping in Arid Areas [J]. Crops, 2023, 39(5): 219-223.
[11] Zhao Weizhe, Du Chunfang, Sun Xuan, Yao Lin, Xian Shuanshi, Zhang Gaoyang. Effects of Stalk Picking on Economic Characteristics and Yield of Oilseed and Vegetable Rape [J]. Crops, 2023, 39(5): 224-230.
[12] Liu Hui, Long Xueyi, Jiao Yan, Wang Lihong. Effects of Combined Application of Biochar and Phosphate Fertilizer on Rice Growth and Yield [J]. Crops, 2023, 39(5): 238-248.
[13] Cao Qingjun, Li Gang, Yang Hao, Lou Yuyong, Yang Fentuan, Kong Fanli, Li Xinbei, Zhao Xinkai, Jiang Xiaoli. The Effects of Different Tillage Practices on Seedbed Quality and Its Relationships with Seedling Population Construction and Grain Yield of Spring Maize [J]. Crops, 2023, 39(5): 249-254.
[14] Zhang Dongxu, Hu Danzhu, Yan Jinlong, Feng Liyun, Wu Zhiyuan, Zhang Junling, Li Yanhua. Effects of Spraying Streptomyces on Yield and Photosynthetic Characteristics of Late-Sown Wheat under Different Crop Rotations [J]. Crops, 2023, 39(5): 255-263.
[15] Zhang Shangpei, Yang Junxue, Luo Shiwu, Wang Yong, Zhang Xiaojuan, Cheng Bingwen. Genetic Diversity and Yielding Ability Analysis of Agronomic Traits in Broom Corn Millet [J]. Crops, 2023, 39(5): 37-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!