Crops ›› 2023, Vol. 39 ›› Issue (6): 114-120.doi: 10.16035/j.issn.1001-7283.2023.06.016

Previous Articles     Next Articles

Response of Nitrogen Accumulation and Translocation after Anthesis in Strong Gluten Wheat to Nitrogen Topdressing Period and Proportion

Liu Zhewen1,2(), Guo Dandan1,2, Chang Xuhong1, Wang Demei1, Wang Yanjie1, Yang Yushuang1, Liu Xiwei1, Wang Yujiao2, Shi Shubing2(), Zhao Guangcai1()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
  • Received:2022-05-13 Revised:2022-06-16 Online:2023-12-15 Published:2023-12-15

Abstract:

In order to explore effects of the topdressing application period and proportion of nitrogen fertilizer on the regulation of nitrogen accumulation and translocation after anthesis in strong gluten wheat, Taishan 27 and Zhongmai 578 were used as materials to analyze and compare the differences of nitrogen absorption, accumulation and translocation in wheat plants after anthesis under the five nitrogen topdressing ratios of 100%:0% (N1), 75%:25% (N2), 50%:50% (N3), 25%:75% (N4) and 0%:100% (N5) at jointing and booting stages. The results showed that the nitrogen accumulation, translocation, translocation efficiency and contribution rate to grain in the vegetative organs of the two wheat varieties after anthesis were highest in N2 treatment. The nitrogen transport of Taishan 27 was mainly contributed by the significant nitrogen transfer of stem+sheath and glume+cob in the middle and late filling stage and leaves in the early filling stage to maturity stage, while the nitrogen transport of Zhongmai 578 was mainly contributed by the significant nitrogen transfer of various vegetative organs in the early and late filling stage, and the nitrogen transfer of stem + sheath in the late growth stage of Zhongmai 578 was faster, which contributed to the nitrogen accumulation of grain. Under N3 treatment, the nitrogen transport and use efficiency of Zhongmai 578 were higher than those of Taishan 27 under the same level treatment, indicating that different wheat varieties had different nitrogen transport capacity after anthesis under different nitrogen topdressing periods and proportions, which was mainly related to the genotype of the variety. The grain yields of Taishan 27 and Zhongmai 578 were the highest in N2 treatment. The grain protein and its component contents of the two wheat varieties reached the standard of high-quality strong gluten wheat at different nitrogen topdressing stages and proportions, and reached the maximum at N4 treatment. Therefore, when the topdressing ratio of nitrogen at booting stage accounted for 25% of the total topdressing ratio, it could improve the absorption of nitrogen by wheat vegetative organs, the transport of nitrogen to grains after anthesis and the increase of grain yield on the basis of achieving high-quality strong gluten wheat.

Key words: Strong gluten wheat, Nitrogen topdressing ratio, Nitrogen accumulation and transport, Yield

Fig.1

Dynamic nitrogen accumulation in wheat vegetative organs after anthesis"

Table 1

The amount of nitrogen transported in various vegetative organs of wheat at anthesis stage kg/hm2"

品种
Variety
处理
Treatment
茎+鞘
Stem and
sheath
叶片
Leaf
颖壳+穗轴
Glume+cob
合计
Total
泰山27
Taishan 27
N1 30.52cd 42.42a 19.45b 92.39bc
N2 33.62bc 44.92a 21.63a 100.17a
N3 28.85de 39.21b 19.08b 87.13c
N4 26.62ef 36.01cd 18.09bc 80.72d
N5 24.43f 32.71e 16.32de 73.46e
中麦578
Zhongmai 578
N1 34.88ab 39.58b 17.09cde 91.55bc
N2 38.62a 44.25a 18.75b 101.62a
N3 36.44ab 42.33a 17.88bcd 96.66ab
N4 33.00bc 37.63bc 16.41de 87.04c
N5 30.73cd 34.37de 15.81e 80.91d

Table 2

Efficiency of nitrogen transport in various vegetative organs of wheat after anthesis %"

品种
Variety
处理
Treatment
茎+鞘
Stem and
sheath
叶片
Leaf
颖壳+穗轴
Glume+cob
平均
Average
泰山27
Taishan 27
N1 61.21ab 67.46de 67.06ab 65.24b
N2 62.94a 68.99bcd 68.50a 66.81a
N3 60.91ab 66.39ef 67.27a 64.86b
N4 60.73ab 66.80ef 66.44ab 64.66b
N5 59.37bc 65.57f 64.79b 63.25c
中麦578
Zhongmai 578
N1 57.40cd 70.28abc 55.07c 60.92ef
N2 59.24bc 70.90a 56.69c 62.28cd
N3 58.87bc 70.62ab 55.99c 61.82de
N4 57.23cd 69.95abc 54.37c 60.52f
N5 56.32d 68.86cd 54.35c 59.85f

Table 3

Contribution rate of nitrogen translocation from different nutrient organs to grain after anthesis %"

品种
Variety
处理
Treatment
茎+鞘
Stem and
sheath
叶片
Leaf
颖壳+穗轴
Glume+cob
合计
Total
泰山27
Taishan 27
N1 13.27cd 18.40ab 8.44ab 40.12bcd
N2 13.89bc 18.61a 8.95a 41.45abc
N3 12.25de 16.70cde 8.11bc 37.05ef
N4 11.56e 15.64de 7.86bcd 35.07fg
N5 11.28e 15.10e 7.54cd 33.92g
中麦578
Zhongmai 578
N1 16.08a 18.24abc 7.87bcd 42.18ab
N2 16.76a 19.19a 8.12bc 44.07a
N3 16.19a 18.80a 7.93bcd 42.93ab
N4 14.75b 16.81bcd 7.34d 38.90cde
N5 14.50b 16.21de 7.45d 38.17de

Table 4

Effects of different nitrogen topdressing time and proportion on wheat yield and its components"

品种
Variety
处理
Treatment
穗粒数
Kernels
number
per
spike
千粒重
1000-
grain
weight
(g)
穗数
Number of
spikes
(×104/hm2)
籽粒
产量
Grain
yield
(kg/hm2)
泰山27
Taishan 27
N1 42.01a 41.90f 559.00d 8502.39a
N2 41.60ab 42.59ef 562.32d 8623.77a
N3 41.39ab 43.53de 535.64e 8348.30b
N4 40.43bc 44.32d 516.81ef 8012.76d
N5 39.66c 44.03d 503.97f 7802.99e
中麦578
Zhongmai 578
N1 33.06de 45.65c 629.07a 8143.16cd
N2 33.91d 46.30c 636.58a 8485.67a
N3 32.59e 48.84a 600.56b 8204.80c
N4 32.12e 48.11ab 591.54bc 7782.37e
N5 31.94e 47.52b 574.03cd 7462.83f

Table 5

Effects of different nitrogen topdressing time and proportion on protein and its component contents of wheat %"

品种
Variety
处理
Treatment
蛋白质
Protein
清蛋白
Albumin
球蛋白
Globulin
醇溶蛋白
Gliadin
谷蛋白
Glutenin
泰山27
Taishan 27
N1 15.54ef 2.39d 1.18cd 3.86ef 5.39e
N2 16.10d 2.40d 1.24c 4.08cd 5.45de
N3 16.18cd 2.46cd 1.26bc 4.27b 5.75c
N4 16.48a 2.57abc 1.37a 4.44a 6.11a
N5 16.32b 2.61ab 1.34ab 4.21bc 5.92b
中麦578
Zhongmai 578
N1 15.20g 2.41d 1.08e 3.52h 5.22f
N2 15.49f 2.55bc 1.12de 3.66g 5.35ef
N3 15.66e 2.59abc 1.20cd 3.74fg 5.60cd
N4 16.24bc 2.63ab 1.25c 3.96de 5.73c
N5 16.06d 2.70a 1.22c 3.74fg 5.70c
[1] 赵广才, 常旭虹, 王德梅, 等. 小麦生产概况及其发展. 作物杂志, 2018(4):1-7.
[2] 赵广才, 常旭虹, 王德梅, 等. 中国小麦生产发展潜力研究报告. 作物杂志, 2012(3):1-5.
[3] Pask A J D, Sylvester-Bradley R, Jamieson P D, et al. Quantifying how winter wheat crops accumulate and use nitrogen reserves during growth. Field Crops Research, 2012, 126:104-118.
doi: 10.1016/j.fcr.2011.09.021
[4] Roger S B, Kindred D R. Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. Journal of Experimental Botany, 2009(7):1939-1951.
[5] 戴忠民, 李妍, 张红, 等. 不同灌溉处理对小麦花后氮素积累和转运的影响. 麦类作物学报, 2015, 35(12):1712-1718.
[6] 张振, 于振文, 张永丽, 等. 氮肥基追比例对测墒补灌小麦植株氮素利用及土壤氮素表观盈亏的影响. 水土保持学报, 2018, 32(5):240-245.
[7] 王美, 赵广才, 石书兵, 等. 氮肥底追比例及施硫对小麦氮素吸收利用的调控. 核农学报, 2017, 31(5):954-963.
doi: 10.11869/j.issn.100-8551.2017.05.0954
[8] 王晨阳, 朱云集, 夏国军, 等. 氮肥后移对超高产小麦产量及生理特性的影响. 作物学报, 1998, 24(6):978-983.
[9] Wuest S B, Cassman K G. Fertilizer-nitrogen use efficiency of irrigated wheat: I. uptake efficiency of preplant versus late- season application. Agronomy Journal, 1992, 84:682-688.
doi: 10.2134/agronj1992.00021962008400040028x
[10] 吴秀萍. 氮肥运筹对豫北冬小麦产量、品质及氮素利用率的影响. 辽宁农业科学, 2021(1):26-29.
[11] 赵广才, 常旭虹, 杨玉双, 等. 基本苗数和底追肥比例对冬小麦籽粒产量和蛋白质组分的影响. 核农学报, 2008, 22(5):712-716.
[12] 王月福, 于振文, 李尚霞, 等. 施氮量对小麦籽粒蛋白质组分含量及加工品质的影响. 中国农业科学, 2002, 35(9):1071- 1078.
[13] 姜丽娜, 张雅雯, 朱娅林, 等. 施氮量对不同品种小麦物质积累、转运及产量的影响. 作物杂志, 2019(5):151-158.
[14] 王德梅, 于振文, 张永丽, 等. 不同灌水处理条件下不同小麦品种氮素积累、分配与转移的差异. 植物营养与肥料学报, 2010, 16(5):1041-1048.
[15] Arduini I, Masoni A, Ercoli L, et al. Grain yield,and dry matter and nitrogen accumulation and remobilization in durum wheat as affected by variety and seeding rate. European Journal of Agronomy, 2006, 25:309-318.
doi: 10.1016/j.eja.2006.06.009
[16] 张庆江, 张立言, 毕恒武. 春小麦品种氮的吸收积累和转运特征及与籽粒蛋白质的关系. 作物学报, 1997, 23(6):712-718.
[17] 张美微, 谢旭东, 王晨阳, 等. 不同生态条件下品种和施氮量对冬小麦产量及氮肥利用效率的影响. 麦类作物学报, 2016, 36(10):1362-1368.
[18] Gastal F, Lemaire G. N uptake and distribution in crops: an agronomical and ecophysiological perspective. Journal of Experimental Botany, 2002, 53(370):789-799.
pmid: 11912222
[19] 刘婷婷, 张平平, 姚金保, 等. 施氮模式对冬小麦花后氮素同化转运及品质性状的影响. 麦类作物学报, 2013, 33(3):472- 476.
[20] 武际, 郭熙盛, 王允青. 氮肥运筹方法对强筋小麦产量和品质的调控效应. 土壤通报, 2008(1):192-194.
[21] 郭明明, 赵广才, 郭文善, 等. 追氮时期和施钾量对小麦氮素吸收运转的调控. 植物营养与肥料学报, 2016, 22(3):590-597.
[22] 代新俊, 夏清, 杨珍平, 等. 氮肥后移对强筋小麦氮素积累转运及籽粒产量与品质的影响. 水土保持学报, 2018, 32(3):289-294.
[23] 赵广才, 常旭虹, 杨玉双, 等. 不同追施氮肥处理对冬小麦产量和品质的影响. 核农学报, 2011, 25(3):559-562,569.
doi: 10.11869/hnxb.2011.03.0559
[24] 杨国敏, 孙淑娟, 周勋波, 等. 群体分布和灌溉对冬小麦农田光能利用的影响. 应用生态学报, 2009, 20(8):1868-1875.
[25] 郭丹丹, 刘哲文, 常旭虹, 等. 施氮处理对不同筋型小麦产量和品质的影响. 作物杂志, 2020(6):158-162.
[26] 李姗姗, 赵广才, 常旭虹, 等. 追氮时期对不同粒色类型小麦产量和品质的影响. 植物营养与肥料学报, 2009, 15(2):255- 261.
[27] 刘哲文, 郭丹丹, 常旭虹, 等. 小麦产量和品质对不同类型土壤和施氮处理的响应. 麦类作物学报, 2022, 42(5):623-630.
[28] 赵广才, 常旭虹, 杨玉双, 等. 施氮量和比例对冬小麦产量和蛋白质组分的影响. 麦类作物学报, 2009, 29(2):294-298.
[29] 马少康, 赵广才, 常旭虹, 等. 氮肥和化学调控对小麦品质的调节效应. 华北农学报, 2010, 25(1):190-193.
[30] 黄禹, 晏本菊, 任正隆. 不同品种小麦籽粒蛋白质组分及谷蛋白大聚合体的积累规律. 西南农业学报, 2007, 20(4):591- 596.
[1] Zhou Xu, He Xiaolei, Cao Liang, Li Duo, Fu Chenye, Zhang Mingcong, Zhang Yuxian, Wang Mengxue. Effects of Different Water Stress and Rehydration at Seedling Stage on Antioxidant Properties and Yield of Soybean [J]. Crops, 2023, 39(6): 135-142.
[2] Yang Shanwei, Liang Renmin, Zhao Haihong, Wei Guijian, He Dengmei, Huang Xumou, Hu Zhongyin, Wei Chunxiang, Xu Chang, Wei Minchao, Wei Shuang, Luo Jiteng, Xu Yingying, Zhang Xiuhua, Han Yi, Wang Shiqiang. Effects of Low Temperature Stress at Booting Stage on Yield and Its Components of High Quality Fragrant Rice [J]. Crops, 2023, 39(6): 143-149.
[3] Liu Xiwei, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Impacts Mechanism of Drought and Heat Stress in the Middle and Late Growing Period on Wheat Grain Yield Formation Process and Mitigation Measures [J]. Crops, 2023, 39(6): 17-25.
[4] Dong Haosheng, Wang Qi, Yan Peng, Xu Yanli, Zhang Wei, Lu Lin, Dong Zhiqiang. Effects of ECK on the Lodging Resistance and Yield of Foxtail Millet Stem [J]. Crops, 2023, 39(6): 181-189.
[5] Liang Zhongyu, Xue Jun, Zhang Guoqiang, Ming Bo, Shen Dongping, Fang Liang, Zhou Linli, Zhang Yuqin, Yang Hengshan, Wang Keru, Li Shaokun. Effects of Phosphorus Application Rate on Lodging Resistance of Maize under Integrated Water and Fertilizer [J]. Crops, 2023, 39(6): 190-194.
[6] Duan Junya, Zhao Yuanyuan, Wei Jianyu, Wang Dexun, Wang Zheng, Wang Tingting, Shi Hongzhi. Effects of Foliar Spraying Polyaspartic Acid on Growth, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2023, 39(6): 195-201.
[7] Xu Shihao, Zhao Chunbo, Huangfu Liyun, Fan Xintong, Chen Shanshan, Han Zhongcai, Han Yuzhu. Effects of Different Potassium Sources on Potassium Accumulation, Transport and Yield Components in Potato [J]. Crops, 2023, 39(6): 202-208.
[8] Hao Zhiyong, Yang Guangdong, Hu Zunyan, Li Jinghua, Sun Bangsheng, Chen Linqi. Effects of Different Fertilizers on Yield, Agronomic Characteristics and Quality of Early Maturing Sorghum [J]. Crops, 2023, 39(6): 218-223.
[9] Wang Zhenlong, Su Cuicui, Zhou Qi, Deng Chaochao, Zhou Yanfang. The Effects of Reducing Nitrogen Fertilizer and Applying Organic Fertilizer on the Yield, Quality, and Soil Quality of Helianthus tuberosus L. [J]. Crops, 2023, 39(5): 104-109.
[10] Liu Yan, Qu Hang, Xing Yuehua, Wang Xiaohui, Gong Liang. Effects of New Types of Nitrogen Fertilizer on Rice Growth, Nitrogen Use Efficiency and Economic Benefit [J]. Crops, 2023, 39(5): 110-116.
[11] Liu Qiuyuan, Li Meng, Gao Yangguang, Shi Mengyu, Wei Yunfei, Ji Xin, Li Li, Liu Yali, Wang Fujuan. Effects of Different Nitrogen Fertilization Patterns on Yield and Quality of Conventional Japonica Rice under Reduced Nitrogen [J]. Crops, 2023, 39(5): 131-137.
[12] Yang Mei, Yang Weijun, Gao Wencui, Jia Yonghong, Zhang Jinshan. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Dry Matter Transport, Agronomic Characteristics and Yield of Winter Wheat in Irrigation Area [J]. Crops, 2023, 39(5): 138-144.
[13] Zhang Rong, Chen Xiaowen, Lu Ping, You Yanrong, Zhou Delu, Li Deming. Effects of Different Mulching Modes on Soil Moisture, Temperature and Yield of Potato in Dry Land [J]. Crops, 2023, 39(5): 145-150.
[14] Wu Xueqin, Liu Kaiyu, Han Chunhua, Alimujiang·Kelaimu , Cui Yannan, Li Jiangyu, Ma Chunmei, Zhong Wenfan, Zhao Qiang. Effects of 14% Thiobenzene-Dioxalon on Defoliation Ripening, Yield and Quality of Cotton [J]. Crops, 2023, 39(5): 164-169.
[15] Guan Qinglin, Piao Shengyuan, Zhang Siwei, Wang Jun, Lei Yunkang, Zhong Qiu, Zhao Mingqin. Effects of Combined Application of Medium-Trace Elements on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism, Yield and Quality of Cigar Tobacco [J]. Crops, 2023, 39(5): 187-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!