Crops ›› 2021, Vol. 37 ›› Issue (5): 114-119.doi: 10.16035/j.issn.1001-7283.2021.05.017

Previous Articles     Next Articles

Study on Soil Organic Matter Content and Its Relationship with Nitrogen, Phosphorus and Potassium in Different Soil Layers of Rice-Growing Tobacco Areas in Southern Hunan

Zhou Qiyun1(), Zheng Chongyi1, Jing Yongfeng2, Liu Yongjun3, Peng Shuguang3, Chen Tao1, Liu Zhixuan1, Hu Ruiwen1, Zhou Qingming1, Li Juan1()   

  1. 1College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
    2Technology Development Center, Hunan China Tobacco Industry Co., Ltd., Changsha 410109, Hunan, China
    3Hunan Institute of Tobacco Science, Changsha 410004, Hunan, China
  • Received:2021-04-02 Revised:2021-04-30 Online:2021-10-15 Published:2021-10-14
  • Contact: Li Juan E-mail:2457756251@qq.com;adalee@163.com

Abstract:

In order to explore the soil organic matter content and its relationship with main nutrients in different soil layers in the rice-growing tobacco areas in southern Hunan. The total of 150 soil samples were collected in Changsha, Hengyang and Chenzhou areas in Hunan at the end of 2017 to study the vertical distribution of organic matter and explore the organic matter correlation with soil available nutrients. The results showed that the average organic matter in the 0-50cm soil layer in the southern Hunan rice-growing tobacco area was 25.80g/kg, which was at a suitable level, and coefficient of variation was 58.98%. Organic matter presented a surface enrichment phenomenon, which decreased with the increase of soil depth; and there was obvious spatial variability. The organic matter content of the 0-20cm soil layer was the highest in the Chenzhou tobacco area, and the organic matter content in the Changsha tobacco area was the lowest. There was a significant positive correlation between the organic matter content and the content of alkali hydrolysis N and available K, and there was no significant correlation between the organic matter content and available P. Organic fertilizer should be added to improve the fertilizer supply capacity of the soil. At the same time, deep ploughing and other measures should be taken to help the mineralization of surface organic matter. The organic matter content in the surface layer of Hengyang and Chenzhou was high, so it was necessary to help the mineralization of organic matter by deep ploughing and ridging.

Key words: Rice-growing tobacco area, Soil organic matter, Alkali hydrolysis N, Available P, Available K, Correlation

Table 1

Distribution characteristics of organic matter content in tobacco-growing soils in southern Hunan"

土层
Soil layer
(cm)
均值
Mean
(g/kg)
标准差
Standard
deviation (g/kg)
变异系数
Coefficient of
variation (%)
土壤有机质含量分布比例Distribution ratio of soil organic matter content (%)
<15.00g/kg 15.00~25.00g/kg 25.01~35.00g/kg 35.01~45.00g/kg >45.00g/kg
0.0~20.0 35.49 12.34 35.00 0.00 26.67 30.00 13.33 30.00
20.1~30.0 22.84 13.61 60.00 36.67 26.67 13.33 13.33 10.00
30.1~50.0 17.65 13.11 74.44 53.33 25.00 15.00 1.67 5.00
0.0~50.0 25.80 15.22 58.98 28.67 26.00 20.67 8.67 16.00

Fig.1

Zoning comparison of organic matter content from different soil layers The different uppercase and lowercase letters indicate significant differences at the 0.01 and 0.05 levels, respectively. The same below"

Fig.2

Comparison of the contents of alkali hydrolysis N, available P and available K in different grades of organic matter in topsoil"

Fig.3

Comparison of the contents of alkali hydrolysis N, available P and available K in different grades of organic matter in sub-topsoil"

Fig.4

Comparison of the contents of alkali hydrolysis N, available P and available K in different grades of organic matter in middle soil layer"

Fig.5

Linear correlation analysis of soil organic matter content and alkali hydrolysis N content in different soil layers"

Fig.6

Analysis of linear correlation between soil organic matter content and available P content in different soil layers"

Fig.7

Analysis of linear correlation between soil organic matter content and available K content in different soil layers"

[1] 黄新杰, 屠乃美, 李艳芳, 等. 湖南省烟稻轮作区土壤养分的空间变异特征. 中国烟草科学, 2012, 33(3):13-16.
[2] 陈江华, 李志宏, 刘建利, 等. 全国主要烟区土壤养分丰缺状况评价. 中国烟草学报, 2004, 10(3):18-22.
[3] 何承刚, 张金华, 苏德艳, 等. 保山烤烟总糖含量与植烟土壤有机质含量的分布特征及关系分析. 云南农业大学学报(自然科学), 2008, 23(6):832-835.
[4] 刘逊, 邓小华, 周米良, 等. 湘西植烟土壤有机质含量分布及其影响因素. 核农学报, 2012, 26(7):1037-1042.
[5] 向世鹏, 向德明, 田峰, 等. 湘西植烟土壤有机质和全氮时空变异特征研究. 土壤, 2020, 52(2):372-377.
[6] 唐春闺, 李帆, 杨红武, 等. 浏阳植烟土壤pH和有机质时空变异及丰缺评价. 云南农业大学学报(自然科学), 2017, 32(1):134-139.
[7] 邓小华, 邓井青, 宾波, 等. 邵阳植烟土壤有机质含量时空特征及与其他土壤养分的关系. 烟草科技, 2014(6):82-86.
[8] 张一扬, 粟深河, 林北森, 等. 靖西市植烟土壤有机质含量的时空变异特征. 土壤, 2020, 52(1):202-206.
[9] 陈建军, 邹勇, 李福君, 等. 粤北始兴烟区植烟土壤养分状况分析. 中国烟草学报, 2012, 18(6):60-64.
[10] 王博, 杨焕文, 李佛琳, 等. 丽江市植烟土壤养分丰缺状况评价. 云南农业大学学报(自然科学), 2011, 26(3):382-388.
[11] 陈江华, 刘建利, 李志宏. 中国植烟土壤及烟草养分综合管理. 北京: 科学出版社, 2008.
[12] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
[13] 杨贤海, 齐绍武, 赵世浩, 等. 湘南地区烟稻轮作和不同年限烟薯套种对土壤微生物的影响. 作物研究, 2013, 27(1):46-49.
[14] 王树会, 邵岩, 李天福, 等. 云南植烟土壤有机质与氮含量的研究. 中国土壤与肥料, 2006(5):18-20,27.
[15] 尚斌, 李德成, 徐宜民, 等. 武陵山烤烟产区土壤有机质与pH特征研究. 土壤通报, 2015, 46(3):590-596.
[16] 胡瑞芝, 王书伟, 林静慧, 等. 湖南省典型农田土壤养分现状及近30年变化趋势. 土壤, 2013, 45(4):585-590.
[17] 孙燕, 高焕梅, 和林涛, 等. 土壤有机质及有机肥对烟草品质的影响. 安徽农业科学, 2007, 35(20):6160-6161.
[18] 尚斌, 邹焱, 徐宜民, 等. 贵州中部山区植烟土壤有机质含量与海拔和成土母质之间的关系. 土壤, 2014, 46(3):446-451.
[19] 刘智炫, 刘勇军, 彭曙光, 等. 基于长期浅耕模式的烟稻轮作区土壤速效养分垂直分布特征. 中国烟草科学, 2020, 41(3):28-35.
[20] 王鑫, 符德龙, 徐梦洁, 等. 毕节市植烟土壤耕层厚度空间分布及其与地形因子的相关性. 中国烟草科学, 2019, 40(2):23-29.
[21] 高旭, 周路阔, 郭婷, 等. 湖南郴州烟区土壤有机质和全氮时空变异及其影响因素研究. 土壤通报, 2020, 51(3):686-693.
[22] 黄昌勇, 徐建明. 土壤学. 北京: 中国农业出版社, 2010.
[23] 王艳杰, 付桦. 雾灵山地区土壤有机质全氮及碱解氮的关系. 农业环境科学学报, 2005, 24(S1):85-90.
[24] 韩锦峰, 朱大恒, 刘华山, 等. 我国烤烟含钾量低的原因及解决途径. 河南农业科学, 2010(2):32-36.
[25] 许明祥, 赵允格, 赵伯善, 等. 石灰性土壤烤烟含钾量及其累积分布的研究. 西北农业大学学报, 2000, 28(1):57-61.
[26] 邓小华, 杨丽丽, 周米良, 等. 湘西喀斯特区植烟土壤速效钾含量分布及影响因素. 山地学报, 2013, 31(5):519-526.
[27] 杨舟非, 张明发, 田峰, 等. 湘西州植烟土壤有机质特征及与土壤养分的相关性研究. 中国农学通报, 2015, 31(1):69-75.
[1] Liu Wenlong, Ning Shanghui, Cao Mingfeng, Zhu Li, Gao Yuzhen, Zhang Xuewei, Wen Zixiang, Jiang Baodi, Jing Yanqiu, Deng Yong. Correlation Analysis of Soil Micronutrient and Chemical Components of Tobacco Leaves in Taoyuan County [J]. Crops, 2021, 37(5): 176-180.
[2] Tang Hongqin, Li Zhongyi, Dong Wenbin, Wei Caihui, He Tieguang, Meng Yancheng, Tang Hailing, Mo Yongcheng. Effects of Different Intercropping Modes of Green Manure Replacing Chemical Fertilizer on Cassava (Manihot esculenta Crantz) Traits and Yield [J]. Crops, 2021, 37(4): 184-190.
[3] Liu Xuetong, Zheng Chunlian, Cao Wei, Dang Hongkai, Cao Caiyun, Li Xiaoshuang, Li Kejiang, Ma Junyong. Effects of Long-Term Located Fertilization on Soil Organic Matter, Nitrogen Forms and Crop Yields [J]. Crops, 2021, 37(4): 130-135.
[4] Yang Ping, Chen Yuli, Gong Fajiang, Bi Haibin, Gao Minghui. Bulking Characteristics of Potato Tubers and Its Correlation with Tuber Fresh Weight [J]. Crops, 2021, 37(2): 130-134.
[5] Zhou Yuexia, Fan Yu, Ruan Jingjun, Yan Jun, Lai Dili, Peng Yan, Tang Yong, Weng Wenfeng, Cheng Jianping. Correlation Analysis of Oat Grain Nutrition and Agronomic Traits [J]. Crops, 2021, 37(2): 165-172.
[6] Jin Jiangang, Tian Zaifang. Grey Correlation Analysis of Introduced Tartary Buckwheat in the Northern Shanxi [J]. Crops, 2021, 37(2): 52-56.
[7] Zhou Qilong. Grey Relational Grade Evaluation of 19 Oat Varieties Introduced in Ali of Tibet [J]. Crops, 2021, 37(1): 26-31.
[8] Liu Zhenxing, Zhou Guimei, Ya Xiuxiu, Chen Jian, Meng Qingxiang, He Guoqing. Effects of Different Sowing Densities on the Morphological Traits and Yields of Three Adzuki Bean Varieties [J]. Crops, 2020, 36(6): 137-142.
[9] Liu Wenting, Zhang Xinjun, Yang Cai, Bai Jing, Yang Xiaohong, Zhou Haitao. Analysis of Nutritional Quality Differences and Formation Factors of Naked Oat [J]. Crops, 2020, 36(5): 140-147.
[10] Zhang Xiaoyan, Wang Xiaonan, Cao Kun, Sun Yufeng. Correlation Analysis of Fiber Yield and Yield Components in Five Industrial Hemp Varieties (Lines) [J]. Crops, 2020, 36(4): 121-126.
[11] Wang Zhongqiu, Ying Pengfei, Chen Mengtao, He Qiongying, Hu Xin. Analysis of Grain and Quality Traits of Chromosome Arm Substitution Lines of Triticum dicoccoides in the Background of Triticum aestivum [J]. Crops, 2020, 36(4): 37-44.
[12] Yang Bin, Yan Xue, Wen Hongwei, Wang Shuguang, Lu Lahu, Fan Hua, Jing Ruilian, Sun Daizhen. Study on the Evaluation of Stay-Green Traits of Wheat and Its Correlation with Yield-Related Traits under Different Water Conditions [J]. Crops, 2020, 36(4): 45-52.
[13] Li Chunhua, Huang Jinliang, Yin Guifang, Wang Yanqing, Lu Wenjie, Sun Daowang, Wang Chunlong, Guo Laichun, Hong Bo, Ren Changzhong, Wang Lihua. Genetic Analysis of Grain Shape Related Traits in Tartary Buckwheat [J]. Crops, 2020, 36(3): 42-46.
[14] Lai Dili,Fan Yu,Zhu Honglin,He Feng,Liang Yong,Xu Xinran,Wen Jie,Wang Junzhen,Yan Jun,Cheng Jianping. Network Analysis of Physiological and Biochemical Indexes of Salt Tolerance in Oats [J]. Crops, 2020, 36(2): 147-155.
[15] Wang Yanqing,Li Yongjun,Li Chunhua,Lu Wenjie,Sun Daowang,Yin Guifang,Hong Bo,Wang Lihua. Correlation and Path Analysis of the Main Agronomic Traits and Yield per Plant of Quinoa [J]. Crops, 2019, 35(6): 156-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!