Crops ›› 2020, Vol. 36 ›› Issue (2): 147-155.doi: 10.16035/j.issn.1001-7283.2020.02.022

Previous Articles     Next Articles

Network Analysis of Physiological and Biochemical Indexes of Salt Tolerance in Oats

Lai Dili1,2,Fan Yu1,2,Zhu Honglin2,He Feng2,Liang Yong2,Xu Xinran2,Wen Jie2,Wang Junzhen3,Yan Jun2,Cheng Jianping1()   

  1. 1 Institute of Triticeae Crops, Guizhou University, Guiyang 550025,Guizhou, China
    2 School of Pharmacy and Bioengineering, Chengdu University/Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu 610106, Sichuan, China
    3 Xichang Institute of Agricultural Sciences, Liangshan 615000, Sichuan, China
  • Received:2019-09-27 Revised:2019-11-23 Online:2020-04-15 Published:2020-04-13
  • Contact: Jianping Cheng E-mail:chengjianping63@qq.com

Abstract:

In order to explore the relationship between salt tolerance and physiological, biochemical indexes of oat seedlings under salt stress, six oat varieties with salt stress (0, 1, 2, 4, 6, 8g/kg NaCl) were treated by sand culture. The growth parameters and physiological, biochemical indicators of oat seedlings were measured on 7th, 14th and 21th day. The data were analyzed by single factor variance, correlation network and membership function. The results indicated that there were significant positive correlation among salt tolerance indexes. There were significant positive correlation between peroxidase activity, chlorophyll content and salt tolerance index. There were significant negative correlation between malondialdehyde content, soluble sugar content, proline content and salt tolerance index. There were significant negative correlation between salt tolerance index, peroxidase, chlorophyll content and 1000-seed weight.

Key words: Oat seedling, Salt tolerance index, Physiological and biochemical index, Correlation

Table 1

Basic situation of oat materials"

品种
Variety
皮/裸燕麦
Skin/Naked oat
千粒重(g)
1000-grain weight
来源
Source
TO31 皮燕麦 25.6661 美国
TO48 皮燕麦 27.4195 美国
TO53 皮燕麦 23.4555 美国
BY6 裸燕麦 22.0431 中国
BY9 裸燕麦 16.7430 中国
JZY4 裸燕麦 19.7903 中国

Fig.1

Relative growth indexes of seedlings of six oat varieties under different salt concentrations and growth time"

Table 2

Effects of varieties, growth time and salt stress levels on salt tolerance indexes of oat seedlings"

耐盐指标
Salt tolerance index
变异来源
Source of variation
自由度
Degree of freedom
均方值
Mean-square value
F值
F value
P值
P value
相对存活率 品种 5 1.195 413.521 0.001
Relative survival rate 生长时间 2 0.102 35.406 0.001
盐浓度 4 4.479 1 549.432 0.001
品种×生长时间 10 0.098 33.860 0.001
品种×盐浓度 20 0.124 43.006 0.001
生长时间×盐浓度 8 0.050 17.392 0.001
品种×生长时间×盐浓度 40 0.022 7.429 0.001
相对根数 品种 5 0.168 35.195 0.001
Relative root number 生长时间 2 1.829 383.281 0.001
盐浓度 4 0.506 106.012 0.001
品种×生长时间 10 0.218 45.622 0.001
品种×盐浓度 20 0.062 12.935 0.001
生长时间×盐浓度 8 0.186 38.880 0.001
品种×生长时间×盐浓度 40 0.035 7.308 0.001
相对苗高 品种 5 0.379 364.308 0.001
Relative seedling height 生长时间 2 0.269 258.865 0.001
盐浓度 4 6.169 5 931.928 0.001
品种×生长时间 10 0.074 70.766 0.001
品种×盐浓度 20 0.093 89.486 0.001
生长时间×盐浓度 8 0.043 40.904 0.001
品种×生长时间×盐浓度 40 0.009 8.895 0.001
相对根长 品种 5 0.088 57.897 0.001
Relative root length 生长时间 2 0.006 4.057 0.019
盐浓度 4 5.684 3 727.296 0.001
品种×生长时间 10 0.025 16.090 0.001
品种×盐浓度 20 0.044 28.765 0.001
生长时间×盐浓度 8 0.083 54.368 0.001
品种×生长时间×盐浓度 40 0.007 4.828 0.001

Fig.2

Physiological and biochemical indexes of six oat varieties seedlings under different salt concentrations and growth time"

Fig.3

Correlation network among salt tolerance indexes, physiological and biochemical indexes and 1000-seed weight of oat seedlings All correlations were significant levels (P<0.05). Ellipse, octagon and diamond represent the salt tolerance index, the biochemical index and the 1000-grain weight of seeds respectively. The edges between nodes indicate positive and negative correlations by solid and dotted lines, respectively. RRN is relative root number, RSH is relative seedling height, RSR is relative survival rate, RRL is relative root length, TGW is 1000-grain weight"

Table 3

Subordinate function value of each variety"

品种
Variety
隶属函数值Subordinate function value 平均值
Mean
相对存活率
Relative
survival rate
相对根数
Relative
root number
相对苗高
Relative
seedling height
相对根长
Relative
root length
SPAD值
SPAD
value
POD活性
POD
activity
Pro含量
Pro
content
MDA含量
MDA
content
SS含量
Soluble sugar
content
TO31 0.5324 0.5026 0.4937 0.3643 0.5855 0.3062 0.8493 0.8325 0.7343 0.5779
TO48 0.3440 0.4356 0.3463 0.2579 0.3406 0.2571 0.7767 0.7309 0.7240 0.4681
TO53 0.6535 0.4984 0.4725 0.3419 0.6506 0.4509 0.6563 0.6759 0.6555 0.5617
BY6 0.6366 0.5643 0.5165 0.2482 0.6758 0.5610 0.7057 0.7770 0.7236 0.6010
BY9 0.6756 0.5360 0.5239 0.2787 0.6232 0.3599 0.7465 0.7304 0.7620 0.5818
JZY4 0.5578 0.4660 0.4239 0.2880 0.5705 0.4959 0.8227 0.7140 0.6218 0.5512
[1] Zhu J K . Plant salt tolerance. Trends in Plant Science, 2001,6(2):66-71.
[2] 陈新, 张宗文, 吴斌 . 裸燕麦萌发期耐盐性综合评价与耐盐种质筛选. 中国农业科学, 2014,47(10):2038-2046.
[3] 刘祖祺, 张石城 . 植物抗性生理学. 北京:中国农业出版社, 1994: 222-223.
[4] Rubio M C, Bustos-Sanmamed P, Clemente M R , et al. Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicas. New Phytologist, 2009,181(4):851-859.
[5] 郭慧娟, 胡涛, 傅金民 . 苏打碱胁迫对多年生黑麦草的生理影响. 草业学报, 2012,21(1):118-125.
[6] 高彩婷, 刘景辉, 徐寿军 , 等. 燕麦盐胁迫响应基因的差异表达与生理响应的关系. 西北植物学报, 2015,35(7):1385-1393.
[7] 曲祥春, 何中国, 郝文媛 , 等. 我国燕麦生产现状及发展对策. 杂粮作物, 2006,26(3):233-235.
[8] 刘景辉, 胡跃高 . 燕麦抗逆性研究. 北京:中国农业出版社, 2010: 1-6.
[9] 王波, 宋凤斌 . 燕麦对盐碱胁迫的反应和适应性. 生态环境, 2006,15(3):625-629.
[10] 范昱, 赖弟利, 王佳俊 , 等. 以色列野生燕麦物候及农艺性状与起源生态地理因素的相关性. 麦类作物学报, 2019,39(1):56-63.
[11] 李倩, 刘景辉, 武俊英 , 等. 盐胁迫对燕麦质膜透性及Na+、K+吸收的影响 . 华北农学报, 2009,24(6):88-92.
[12] 武俊英, 刘景辉, 翟利剑 , 等. 不同品种燕麦种子萌发和幼苗生长的耐盐性. 生态学杂志, 2009,28(10):1960-1965.
[13] Bai J H, Yan W K, Wang Y Q , et al. Screening oat genotypes for tolerance to salinity and alkalinity. Frontiers in Plant Science, 2018,9:1302.
[14] Wang G J, Wang L, Meng X , et al. Effect of saline-alkalistress on seed germination and seedling growth of oat. Plant Diseases and Pests, 2015,6(2):26-29,41.
[15] 付鸾鸿, 于崧, 于立河 , 等. 不同基因型燕麦萌发期耐盐碱性分析及其鉴定指标的筛选. 作物杂志, 2018(6):27-35,174.
[16] 刘勇, 周青平, 顔红波 , 等. 3种裸燕麦种子萌发期耐盐性的研究. 青海大学学报(自然科学版), 2013,31(5):53-56.
[17] 蔡天革, 王鹏, 唐凤德 . 盐胁迫对燕麦种子萌发和幼苗抗氧化酶的影响. 辽宁大学学报(自然科学版), 2016,43(1):74-78.
[18] Petrusa L M, Winicov I . Proline status in salt-tolerant and salt-sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiology and Biochemistry, 1997,35(4):303-310.
[19] Soussi M, Ocana A, Liuch C . Effects of salt stress on growth,photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L). Journal of Experimental Botany, 1998,49(325):1329-1337.
[20] El-Samad H M A, Shaddad M A K . Salt tolerance of soybean cultivars. Biologia Plantarum, 1997,39(2):263-269.
[21] Zhao Z, Liu J H, Jia R Z , et al. Physiological and TMT-based proteomic analysis of oat early seedlings in response to alkali stress. Journal of Proteomics, 2018,193:10-26.
[22] Bai J H, Liu J H, Zhang N , et al. Effect of alkali stress on soluble sugar,antioxidant enzymes and yield of oat. Journal of Integrative Agriculture, 2013,12(8):1441-1449.
[23] 武俊英, 刘景辉, 李倩 , 等. 盐胁迫对燕麦种子萌发、幼苗生长及叶片质膜透性的影响. 麦类作物学报, 2009,29(2):341-345.
[24] 白健慧 . 燕麦对盐碱胁迫的生理响应机制研究. 呼和浩特:内蒙古农业大学, 2016.
[25] 张志良, 瞿伟菁 . 植物生理学实验指导. 第3版. 北京:高等教育出版社, 1980: 123-276.
[26] 凡迪, 薛文韬, 严俊 , 等. 四倍体小麦籽粒多组分营养物质含量的QTL定位及相关性分析. 麦类作物学报, 2014(12):1611-1618.
[27] Yan J, Chen G X, Cheng J P , et al. Phenotypic variation of caryopsis dormancy and seedling salt tolerance of wild barley,Hordeum spontaneum,from different habitats in Israel. Genetic Resources and Crop Evolution 2008,55(7):995-1005.
[28] 李建设, 沈国伟, 任长忠 , 等. 燕麦种子萌发和幼苗生长对不同盐胁迫的反应. 麦类作物学报, 2009,29(6):1043-1047.
[29] 杨发荣, 刘文瑜, 黄杰 , 等. 不同藜麦品种对盐胁迫的生理响应及耐盐性评价. 草业学报, 2017,26(12):77-88.
[30] 张悦, 唐凤兰, 张月学 , 等. NaCl盐胁迫对苗期燕麦的耐盐性鉴定及综合评价. 牧草与饲料, 2009,3(3):40-43.
[31] 芦翔, 汪强, 赵惠萍 , 等. 盐胁迫对不同燕麦品种种子萌发和出苗影响的研究. 草业科学, 2009,26(7):77-81.
[32] 郑洪亮 . 基于连锁与连锁不平衡联合作图的粳稻耐盐性遗传位点解析. 哈尔滨:东北农业大学, 2015.
[33] 魏睿, 麻冬梅, 许兴 . 转多基因草坪草的耐盐性鉴定. 北方园艺, 2013(7):59-62.
[34] 张超强, 杨颖丽, 王莱 , 等. 盐胁迫对小麦幼苗时片H2O2产生和抗氧化酶活性的影响. 西北师范大学学报(自然科学版), 2007,43(1):71-75.
[35] 魏国强, 朱祝军, 方学智 , 等. NaCl胁迫对不同品种黄瓜幼菌生长叶绿素荧光特性和活性氧代谢的影响. 中国农业科学, 2004,37(11):1754-1759.
[36] Rahnama H. Ebrahimzadeh H . The effect of NaCl on antioxidant enzyme activities in potato seedings. Plant Biology, 2005,49(1):93-97.
[37] 贺岩, 李志岗, 李新鹏 , 等. 盐胁迫条件下两种基因型小麦生长及保护酶活性的反应. 山西农业大学学报(自然科学版), 2005(1):42-44.
[38] Hackl H, Mistele B, Hu Y C , et al. Spectral assessments of wheat plants grown in pots and containers under saline conditions. Functional Plant Biology, 2013,40(4):409-424.
[39] Sleimi N, Guerfali S, Bankaji I . Biochemical indicators of salt stress in Plantago maritima:Implications for environ-mental stress assessment. Ecological Indicators, 2015,48:570-577.
[40] Plazek A, Dubert F, Koscielniak J . Tolerance of miscanthus× giganteus to salinity depends on initial weight of rhizomes as well as high accumulation of potassium and proline in leaves. Industrial Crops and Products, 2014,52:278-285.
[41] 孙清洋, 李志勇, 李鸿雁 , 等. 不同盐浓度下9份老芒麦种质材料的萌发及生理特性. 草业科学, 2016,33(11):2266-2275.
[42] 时丽冉, 郭晓丽, 白丽荣 , 等. 不同基因型小黑麦苗期耐盐性的评价. 麦类作物学报, 2010,30(3):500-503,514.
[43] 孙永媛, 肖凯, 王冬梅 , 等. 不同小麦品种苗期的耐盐性鉴定及其相关生理参数研究. 河北农业大学学报, 2010,33(6):84-90,104.
[44] 李孔晨, 卢欣石 . 黑麦草属9个品种萌发及苗期耐盐性研究. 草业科学, 2008,25(3); 111-115.
[45] 孟林, 毛培春, 张国芳 . 偃麦草属植物种质材料不同耐盐群体生理指标分析. 干早地区农业研究, 2009,27(4); 83-88.
[46] Lacerda C F, Cambreia j, Oliva M A , et al. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environment and Experiment of Botany, 2003,49(2):107-120.
[47] Liu C, Liu Y, Guo K , et al. Effect of drought on pigments,osmotic adjustment and antioxidant enzymes in six woodyplant species in karst habitats of southwestern China. Environmental and Experimental Botany, 2011,71(2); 174-183.
[1] Wang Yanqing,Li Yongjun,Li Chunhua,Lu Wenjie,Sun Daowang,Yin Guifang,Hong Bo,Wang Lihua. Correlation and Path Analysis of the Main Agronomic Traits and Yield per Plant of Quinoa [J]. Crops, 2019, 35(6): 156-161.
[2] Liu Xingye,Xing Baolong,Wu Ruixiang,Wang Guimei,Liu Fei. Main Agronomic Traits Variation and Its Effects on Yield Composition of Mung Bean in Northern Shanxi Province [J]. Crops, 2019, 35(5): 69-75.
[3] Ying Fu,Yinan Shen,Yanchun Liu,Xiaojiao Chai,Xianrui Wang,Xiaolei Bai,Shutian Li. Correlation Analysis of Amylopectin Content, Nutritional Quality and Agronomic Traits in Spring Millet Varieties [J]. Crops, 2019, 35(2): 90-93.
[4] Jing Yan,Wenxiu Ji,Xianji Shi,Shimiao Zhu,Hulin Li. Effects of Cadmium Stress on Seed Germination and Seedling Growth of Tobacco (Nicotiana tabacum) [J]. Crops, 2019, 35(2): 142-149.
[5] Chen Guangzhou,Wang Guangfu,Qu Jianzhou,Si Leiyong,Jin Yan,Xu Shutu,Xue Jiquan,Lu Haidong. Study on Grain Dehydration Rate and Correlation Analysis of Major Related Characters in Different Maize Inbred Lines [J]. Crops, 2018, 34(5): 33-39.
[6] Wu Ronghua,Zhuang Kezhang,Liu Peng,Zhang Chunyan. Response of Summer Maize Yield to Meteorological Factors in Lunan Region [J]. Crops, 2018, 34(5): 104-109.
[7] Bin Zhang,Jinxiu Li,Zhen Wang,Hao Feng,Jinbang Li. Correlation and Cluster Analysis of Agronomic Traits in Wheat Lines [J]. Crops, 2018, 34(3): 57-60.
[8] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines) [J]. Crops, 2018, 34(1): 77-82.
[9] Shuguang Wang,Yugang Shi,Huawei Shi,Yaping Cao,Daizhen Sun. Research on Relationship between Photosynthetic Characteristics and Drought Resistance in Spring Wheat [J]. Crops, 2017, 33(6): 23-29.
[10] Han Yan,Hanglin Song,Li Zhang,Jing Yan,Xianji Shi,Shimiao Zhu,Lu Liu,Hulin Li. Effects of Cadmium Stress on Agronomic Traits and Physiological and Biochemical Indexes of Flue-Cured Tobacco [J]. Crops, 2017, 33(5): 156-161.
[11] Haihua Luo,Deyi Shao,Gong Chen,Xiumin Xu,Xin Gao,Changkai Yuan,Jinjian Peng,Feiyu Tang. Comparative Analysis of Trait Correlation between Conventional Varieties (Lines) and Hybrids of Cotton [J]. Crops, 2017, 33(5): 31-37.
[12] Juan Zhong,Zhiqiang Fu,Li Liu,Zhijuan Zhu,Huabin Zheng. Correlation Analysis of Methane Transport Capacity and Root Characteristics in Rice [J]. Crops, 2017, 33(4): 105-112.
[13] Huyi He,Guanning Tan,Xinmin He,Xin Yang,Zhouping Tang,Lishu Li. The Relationship and Cluster Analysis on Polysaccharides and Cellulose of Different Varieties of Dendrobium officinale [J]. Crops, 2017, 33(2): 29-33.
[14] Haitao Cheng,Zhaohui Ma,Guilin Liu,Ping Cao,Wenyan Lü. Canonical Correlation Analysis between RVA Profile Characteristics and Quality Traits of Japonica Rice Varieties [J]. Crops, 2017, 33(2): 59-66.
[15] Min Xu,Yushu Hu,Jinglin Li,Lulu Jin,Zisheng Wang. Clustering and Correlation Analysis of Earlier-Mauture Cotton Innovation Germplasm based on Biological Characters [J]. Crops, 2017, 33(1): 25-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[2] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[3] Sun Yue,Liu Bin,Fu Manqi,Wang Jing,Wang Xiaohui,Chen Fu. Spatio-Temporal Dynamic Changes of Linseed Production in China from 1985 to 2015[J]. Crops, 2019, 35(6): 8 -13 .
[4] Zhu An,Gao Jie,Huang Jian,Wang Hao,Chen Yun,Liu Lijun. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice[J]. Crops, 2020, 36(2): 1 -8 .
[5] Zhang Xin,Cao Liru,Wei Liangming,Zhang Qianjin,Zhou Ke,Wang Zhenhua,Lu Xiaomin. Expression Analysis and Interaction Prediction of Maize Glucose Transporter Gene ZmGLUT-1[J]. Crops, 2020, 36(1): 22 -28 .
[6] Pan Lei,Xu Jie,Yang Shuai,Chen Yunsong,Chen Lianhong,Ma Wenguang. Pollen Viability, Morphology and Physiological Indexes of Three Tobacco Varieties at Different Storage Temperatures[J]. Crops, 2020, 36(2): 112 -118 .
[7] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize[J]. Crops, 2020, 36(2): 140 -146 .
[8] . [J]. Crops, 2020, 36(2): 200 -204 .
[9] Ma Hui,Jiao Xiaoyu,Xu Xue,Li Juan,Ni Dahu,Xu Rongfang,Wang Yu,Wang Xiufeng. Advances in Physiological and Molecular Mechanisms of Cadmium Metabolism in Rice[J]. Crops, 2020, 36(1): 1 -8 .
[10] Wang Meichun,Lian Rongfang,Xiao Gui,Mo Jinping,Cao Ning. Review and Industrial Development Countermeasures of Lentils in China[J]. Crops, 2020, 36(1): 13 -16 .