Crops ›› 2022, Vol. 38 ›› Issue (1): 1-10.doi: 10.16035/j.issn.1001-7283.2022.01.001
Shi Xionggao1,3(), Pei Xuexia2(), Dang Jianyou2, Zhang Dingyi2
[1] | 石雪侠. 农业水资源的可持续利用策略研究. 现代农业研究, 2020, 26(9):42-43. |
[2] | 高祥照, 杜森, 吴勇, 等. 水肥耦合是提高水肥利用效率的战略方向. 农业技术与装备, 2011(5):14-15. |
[3] | 蔡荣方, 曾友莲. 水肥一体化技术提高水肥利用效率研究进展. 农业开发与装备, 2018(11):87. |
[4] | Zhang F S, Cui Z L, Chen X P, et al. Integrated nutrient management for food security and environmental quality in China. Advances in Agronomy, 2012, 116:1-40. |
[5] |
Cui Z L, Chen X P, Hang F S. Current nitrogen management status and measures to improve the intensive wheat-maize system in China. AMBIO:A Journal of the Human Environment, 2010, 39(6):376-384.
doi: 10.1007/s13280-010-0076-6 |
[6] |
Ju X T, Kou C L, Zhang F S, et al. Nitrogen balance and groundwater nitrate contamination:comparison among three intensive cropping systems on the North China Plain. Environmental Pollution, 2006, 143(1):117-125.
pmid: 16364521 |
[7] | 孙铖, 周华真, 陈磊, 等. 东北三省农田化肥氮地下淋溶污染等级评估. 农业资源与环境学报, 2018, 35(5):405-411. |
[8] |
Hu Y K, Moiwo J P, Yang Y H, et al. Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District,North China Plain. Journal of Hydrology, 2010, 393(3):219-232.
doi: 10.1016/j.jhydrol.2010.08.017 |
[9] |
Lin S S, Hernandez-Ramirez G. Nitrous oxide emissions from manured soils as a function of various nitrification inhibitor rates and soil moisture contents. Science of the Total Environment, 2020, 738:139669.
doi: 10.1016/j.scitotenv.2020.139669 |
[10] |
David C, Lemke R, Helgason W, et al. Current inventory approach overestimates the effect of irrigated crop management on soil-derived greenhouse gas emissions in the semi-arid Canadian Prairies. Agricultural Water Management, 2018, 208:19-32.
doi: 10.1016/j.agwat.2018.06.006 |
[11] |
Trost B, Prochnow A, Drastig K, et al. Irrigation,soil organic carbon and N2O emissions. A review. Agronomy for Sustainable Development, 2013, 33(4):733-749.
doi: 10.1007/s13593-013-0134-0 |
[12] | 申洪源. 2020年中国小麦市场分析. 粮油市场报, 2021-02-20(B02). |
[13] | 郑成岩, 于振文, 张永丽, 等. 不同施氮水平下灌水量对小麦水分利用特征和产量的影响. 应用生态学报, 2010, 21(11):2799-2805. |
[14] | 王滨. 我国小麦种植区划漫话. 黑龙江粮食, 2017(6):41-43. |
[15] | 党建友, 裴雪霞, 张定一, 等. 微喷灌水氮一体化对冬小麦生长发育和水肥利用效率的影响. 应用生态学报, 2020, 31(11):3700-3710. |
[16] | 高祥照. 水肥一体化是现代农业的“一号技术”. 中国农资, 2017(20):19. |
[17] | 李寒松, 贾振超, 张锋, 等. 国内外水肥一体化技术发展现状与趋势. 农业装备与车辆工程, 2018, 56(6):13-16. |
[18] | Bar-Yosef. Advances in fertigation. Advances in Agronomy, 1999, 65:1-77. |
[19] | 高祥照. 水肥一体化是提高水肥利用效率的核心. 中国农业信息, 2013(14):3-4. |
[20] |
Michela F, Paolo B, Tosti G, et al. High fertigation frequency improves nitrogen uptake and crop performance in processing tomato grown with high nitrogen and water supply. Agricultural Water Management, 2015, 154:52-58.
doi: 10.1016/j.agwat.2015.03.002 |
[21] | 李茂权, 朱帮忠, 赵飞, 等. “水肥一体化”技术试验示范与应用展望. 安徽农学通报, 2011, 17(7):100-101. |
[22] | 张丽萍, 柳建丽, 孙胜伟, 等. 滴管暗灌蔬菜栽培技术的推广与应用. 农业技术与装备, 2012(13):54-55. |
[23] | 高鹏, 简红忠, 魏样, 等 水肥一体化技术的应用现状与发展前景. 现代农业科技, 2012(8):250,257. |
[24] | 宋计平, 王克安, 孙凯宁, 等. 膜下滴灌对春拱棚茄子经济效益及土壤质量的影响. 山东农业科学, 2016, 48(3):86-90. |
[25] |
Dell C J, Han K, Bryant R B, et al. Nitrous oxide emissions with enhanced efficiency nitrogen fertilizers in a rainfed system. Agronomy Journal, 2014, 106(2):723-731.
doi: 10.2134/agronj2013.0108 |
[26] |
Massimiliano D A M, Parton W J, Bell M J, et al. Soybean fallow and nitrification inhibitors:strategies to reduce N2O emission intensities and N losses in Australian sugarcane cropping systems. Agriculture,Ecosystems and Environment, 2021, 306:107150.
doi: 10.1016/j.agee.2020.107150 |
[27] |
Wu Y, Yan S C, Fan J L, et al. Responses of growth,fruit yield,quality and water productivity of greenhouse tomato to deficit drip irrigation. Scientia Horticulturae, 2021, 275:109710.
doi: 10.1016/j.scienta.2020.109710 |
[28] |
Yang Q L, Zhang F C, Li F S. Effect of different drip irrigation methods and fertilization on growth,physiology and water use of young apple tree. Scientia Horticulturae, 2011, 129(1):119-126.
doi: 10.1016/j.scienta.2011.03.019 |
[29] |
Sinha I, Buttar G S, Brar A S. Drip irrigation and fertigation improve economics,water and energy productivity of spring sunflower (Helianthus annuus L.) in Indian Punjab. Agricultural Water Management, 2017, 185:58-64.
doi: 10.1016/j.agwat.2017.02.008 |
[30] | 李坚, 刘云骥, 王丹丹, 等. 日光温室小型水肥一体灌溉机设计及其控制模型的建立. 节水灌溉, 2017(4):87-91. |
[31] | 李传哲, 许仙菊, 马洪波, 等. 水肥一体化技术提高水肥利用效率研究进展. 江苏农业学报, 2017, 33(2):469-475. |
[32] |
Simpson A R, Dandy G C, Murphy L J. Genetic algorithms compared to other techniques for pipe optimization. Journal of Water Resources Planning and Management, 1994, 120(4):423-443.
doi: 10.1061/(ASCE)0733-9496(1994)120:4(423) |
[33] | 兰家祥. 基于Zigbee技术的水肥一体化调节系统的设计与试验. 福州:福建农林大学, 2019. |
[34] | 王振民, 梁春英, 黄丽萍, 等. 我国水肥一体化技术研究现状与发展对策. 农村实用技术, 2020(3):85-87. |
[35] | 黄语燕, 刘现, 王涛, 等. 我国水肥一体化技术应用现状与发展对策. 安徽农业科学, 2021, 49(9):196-199. |
[36] |
Li J S. Increasing crop productivity in an eco-friendly manner by improving sprinkler and micro-irrigation design and management: a review of 20 years’ research at the IWHR,China. Irrigation and Drainage, 2018, 67:97-112.
doi: 10.1002/ird.v67.1 |
[37] | 陈广锋, 杜森, 江荣风, 等. 我国水肥一体化技术应用及研究现状. 中国农技推广, 2013, 29(5):39-41. |
[38] | 新华社. 中共中央 国务院关于坚持农业农村优先发展做好“三农”工作的若干意见. (2019-02-19) [2020-07-26]. http://www.gov.cn/zhengce/2019-02/19/content_5366917.htm . |
[39] | 新华社. 中共中央 国务院关于抓好“三农”领域重点工作确保如期实现全面小康的意见. (2020-02-05) [2020-07-26]. http://www.gov.cn/zhengce/2020-02/05/content_5474884.htm . |
[40] | 农业部办公厅关于印发《推进水肥一体化实施方案(2016-2020年)》的通知. (2017-11-27)[2020-07-26]. http://www.moa.gov.cn/nybgb/2016/diwuqi/201711/t20171127_5920793.htm . |
[41] |
Li H R, Mei X R, Wang J D, et al. Drip fertigation significantly increased crop yield,water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices:a meta-analysis in China. Agricultural Water Management, 2021, 244:106534.
doi: 10.1016/j.agwat.2020.106534 |
[42] |
Zhao W X, Shan Z J, Li J S, et al. Effects of fertigation splits through center pivot on the nitrogen uptake,yield,and nitrogen use efficiency of winter wheat grown in the North China Plain. Agricultural Water Management, 2020, 240:106291.
doi: 10.1016/j.agwat.2020.106291 |
[43] | 张丽霞, 杨永辉, 尹钧, 等. 水肥一体化对小麦干物质和氮素积累转运及产量的影响. 农业机械学报, 2021, 52(2):275-282,319. |
[44] | 张英华, 张琪, 徐学欣, 等. 适宜微喷灌灌水频率及氮肥量提高冬小麦产量和水分利用效率. 农业工程学报, 2016, 32(5):88-95. |
[45] | 李金鹏, 宋文越, 姚春生, 等. 微喷水肥一体化对冬小麦产量和水分利用效率的影响. 中国农业大学学报, 2020, 25(3):1-9. |
[46] | 郭培武, 赵俊晔, 石玉, 等. 水肥一体化条件下施氮量对小麦冠层光截获特性和产量的影响. 山东农业科学, 2018, 50(8):81-85. |
[47] |
Abedin T, Yamamoto A, Hayashi T, et al. Drip fertigation enhances the growth of hydroponic lettuce (Lactuca sativa) using polyester fiber substrate. Scientia Horticulturae, 2021, 276:109604.
doi: 10.1016/j.scienta.2020.109604 |
[48] |
Wang C Y, Liu W X, Li Q X, et al. Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crops Research, 2014, 165:138-149.
doi: 10.1016/j.fcr.2014.04.011 |
[49] | 宋兆云. 微喷补灌水肥一体化管理对小麦产量和水氮利用效率调节的生理基础. 泰安:山东农业大学, 2018. |
[50] | 武继承, 杨永辉, 潘晓莹, 等. 小麦-玉米滴灌水肥一体化的节水增产效应. 河南农业科学, 2017, 46(2):16-21. |
[51] |
Li H R, Mei X R, Vinay N, et al. Effects of different nitrogen fertilizers on the yield,water- and nitrogen-use efficiencies of drip-fertigated wheat and maize in the North China Plain. Agricultural Water Management, 2021, 243:106474.
doi: 10.1016/j.agwat.2020.106474 |
[52] |
Man J, Wang D, White P. Photosynthesis and dry mass production of winter wheat in response to micro-sprinkling irrigation. Agronomy Journal, 2017, 109(2):549-561.
doi: 10.2134/agronj2016.05.0301 |
[53] |
Zhang Y Q, Wang J D, Gong S H, et al. Nitrogen fertigation effect on photosynthesis,grain yield and water use efficiency of winter wheat. Agricultural Water Management, 2017, 179:277-287.
doi: 10.1016/j.agwat.2016.08.007 |
[54] | 张晶, 党建友, 裴雪霞, 等. 微喷灌水肥一体化下磷钾肥减量分期施用对小麦产量和养分利用的影响. 核农学报, 2020, 34(3):629-634. |
[55] |
Romulo P L, Bruno M F, Jagmandeep S D, et al. Wheat grain yield and grain-nitrogen relationships as affected by N,P,and K fertilization:a synthesis of long-term experiments. Field Crops Research, 2019, 236:42-57.
doi: 10.1016/j.fcr.2019.03.005 |
[56] |
Yang J C, Zhang J H, Liu K, et al. Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytologist, 2006, 171(2):293-303.
doi: 10.1111/nph.2006.171.issue-2 |
[57] |
Blacklow W M, Incoll L D. Nitrogen stress of winter wheat changed the determinants of yield and the distribution of nitrogen and total dry matter during grain filling. Functional Plant Biology, 1981, 8(2):191-200.
doi: 10.1071/PP9810191 |
[58] |
Rao A C S, Smith J L, Jandhyala V K, et al. Cultivar and climatic effects on the protein content of soft white winter wheat. Agronomy Journal, 1993, 85(5):1023-1028.
doi: 10.2134/agronj1993.00021962008500050013x |
[59] |
Rajeev N B, Celymar A S, Shi W J, et al. Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.). Physiologia Plantarum, 2017, 159(1):59-73.
doi: 10.1111/ppl.2017.159.issue-1 |
[60] |
Yadav G, Ellis R H. Effects of rain shelter or simulated rain during grain filling and maturation on subsequent wheat grain quality in the UK. The Journal of Agricultural Science, 2016, 155(2):300-316.
doi: 10.1017/S0021859616000411 |
[61] | 赵长星, 马东辉, 王月福, 等. 施氮量和花后土壤含水量对优质强筋小麦产量和品质的影响. 生态学报, 2008, 28(9):4396-4404. |
[62] |
Suprayogi Y, Clarke J M, Bueckert R, et al. Nitrogen remobilization and post-anthesis nitrogen uptake in relation to elevated grain protein concentration in durum wheat. Canadian Journal of Plant Science, 2011, 91(2):273-282.
doi: 10.4141/CJPS10185 |
[63] | Tayebeh A, Alemzadeh A. Wheat yield and grain protein response to nitrogen amount and timing. Australian Journal of Crop Science, 2011, 5(3):330-336. |
[64] |
Elliott G D, O’Sullivan C A, Margaret M R, et al. Influence of co-application of nitrogen with phosphorus,potassium and sulphur on the apparent efficiency of nitrogen fertilizer use,grain yield and protein content of wheat:review. Field Crops Research, 2018, 226:56-65.
doi: 10.1016/j.fcr.2018.07.010 |
[65] |
Yan S C, Wu Y, Fan J L, et al. Dynamic change and accumulation of grain macronutrient (N,P and K) concentrations in winter wheat under different drip fertigation regimes. Field Crops Research, 2020, 250:107767.
doi: 10.1016/j.fcr.2020.107767 |
[66] | 张孟妮, 毛平平, 王丽, 等. 微喷水肥一体化提高冬小麦产量与品质. 中国土壤与肥料, 2017(4):86-92. |
[67] | 张晶, 党建友, 张定一, 等. 节水灌溉方式与磷钾肥减施对小麦产量、品质及水肥利用效率的影响. 水土保持学报, 2020, 34(6):166-171. |
[68] | 侯芳芳, 张睿, 孙燕妮, 等. 不同生育期喷灌对渭北旱地小麦产量及品质的影响. 麦类作物学报, 2017, 37(4):543-547. |
[69] | 张孟妮. 微喷水肥一体化对土壤酶活性及水氮利用效率的影响. 临汾:山西师范大学, 2018. |
[70] | 武继承, 潘晓莹, 杨永辉, 等. 化肥与沼肥配施水肥一体化对小麦产量与水分利用的影响. 土壤科学, 2019, 7(4):262-269. |
[71] | 徐兆飞, 张惠叶, 张定一. 小麦品质及其改良. 北京: 气象出版社, 2000:51-54. |
[72] | 姚素梅, 康跃虎, 刘海军, 等. 喷灌与地面灌溉条件下冬小麦光合作用的日变化研究. 农业工程学报, 2005, 21(11):16-19. |
[73] | 李伏生, 陆申年. 灌溉施肥的研究和应用. 植物营养与肥料学报, 2000, 6(2):233-242. |
[74] | 邹晓霞. 节水灌溉与保护性耕作应对气候变化效果分析. 北京:中国农业科学院, 2013. |
[75] |
Wang J D, Gong S H, Xu D, et al. Impact of drip and level-basin irrigation on growth and yield of winter wheat in the North China Plain. Irrigation Science, 2013, 31(5):1025-1037.
doi: 10.1007/s00271-012-0384-7 |
[76] | 聂紫瑾, 陈源泉, 张建省, 等. 黑龙港流域不同滴灌制度下的冬小麦产量和水分利用效率. 作物学报, 2013, 39(9):1687-1692. |
[77] | 宜丽宏, 王丽, 张孟妮, 等. 不同灌溉方式对冬小麦生长发育及水分利用效率的影响. 灌溉排水学报, 2017, 36(10):14-19. |
[78] | 周加森, 马阳, 吴敏, 等. 不同水肥措施下的冬小麦水氮利用和生物效应研究. 灌溉排水学报, 2019, 38(9):36-41. |
[79] | 何昕楠. 微喷补灌水肥一体化对冬小麦水分和氮素利用效率的影响. 泰安:山东农业大学, 2019. |
[80] |
Sun H Y, Liu C M, Zhang X Y, et al. Effects of irrigation on water balance,yield and WUE of winter wheat in the North China Plain. Agricultural Water Management, 2006, 85(1):211-218.
doi: 10.1016/j.agwat.2006.04.008 |
[81] | 陈凯丽, 赵经华, 黄红建, 等. 不同滴灌灌水定额对小麦的耗水特性和产量的影响. 灌溉排水学报, 2017, 36(3):65-68,84. |
[82] | 倪胜利, 李兴茂, 王亚翠, 等. 旱后复水对冬小麦生长发育及水分利用效率的影响. 灌溉排水学报, 2018, 37(11):20-25. |
[83] |
Shen X J, Wang G S, Zeleke K T, et al. Crop water production functions for winter wheat with drip fertigation in the North China Plain. Agronomy, 2020, 10(6):876.
doi: 10.3390/agronomy10060876 |
[84] | Granberry D M, Harrison K A, Kelley W T. Drip chemigation:injecting fertilizer,acid and chlorine. Bulletin 1130. University of Georgia,College of Agricultural and Environmental Science,Cooperative Extention Service, Athens, 2001: 13. |
[85] | Liu Y, Li J, Li Y. Effects of split fertigation rates on the dynamics of nitrate in soil and the yield of mulched drip-irrigated maize in the sub-humid region. Applied Engineering in Agriculture, 2015, 31(1),103-117. |
[86] |
Zhou Z J, Plauborg F, Liu F L, et al. Yield and crop growth of table potato affected by different split-N fertigation regimes in sandy soil. European Journal of Agronomy, 2018, 92:41-50.
doi: 10.1016/j.eja.2017.10.001 |
[87] | 林祥. 微喷补灌水肥一体化调控冬小麦水氮高效利用的生理生态机制. 泰安:山东农业大学, 2020. |
[88] | 陈静, 王迎春, 李虎, 等. 滴灌施肥对免耕冬小麦水分利用及产量的影响. 中国农业科学, 2014, 47(10):1966-1975. |
[89] | 尹飞虎, 曾胜和, 刘瑜, 等. 滴灌春麦水肥一体化肥效试验研究. 新疆农业科学, 2011, 48(12):2299-2303. |
[90] | Li S X, Wang Z H, Hu T T, et al. Nitrogen in dry land soils of China and it's management. Advance in Agronomy, 2009, 101:123-181. |
[91] |
Mohamed E, Carl J R, Satish C G, et al. Potato yield response and nitrate leaching as influenced by nitrogen management. Agronomy Journal, 1998, 90(1):10-15.
doi: 10.2134/agronj1998.00021962009000010003x |
[92] |
Quaggio J A, Souza T R, Fernando C B Z, et al. Nitrogen-fertilizer forms affect the nitrogen-use efficiency in fertigated citrus groves. Journal of Plant Nutrition and Soil Science, 2014, 177(3):404-411.
doi: 10.1002/jpln.v177.3 |
[93] |
Laher M, Avnimelech Y. Nitrification inhibition in drip irrigation systems. Plant and Soil, 1980, 55(1):35-42.
doi: 10.1007/BF02149706 |
[94] | 党建友, 裴雪霞, 张定一, 等. 灌溉方法与施氮对土壤水分、硝态氮和小麦生长发育的调控效应. 应用生态学报, 2019, 30(4):1161-1169. |
[95] |
Guan G, Tu S X, Li H L, et al. Phosphorus fertilization modes affect crop yield,nutrient uptake,and soil biological properties in the rice-wheat cropping system. Soil Science Society of America Journal, 2013, 77(1):166-172.
doi: 10.2136/sssaj2011.0324 |
[96] |
Wang Y, Zhao X, Wang L, et al. Phosphorus fertilization to the wheat-growing season only in a rice-wheat rotation in the Taihu Lake Region of China. Field Crops Research, 2016, 198:32-39.
doi: 10.1016/j.fcr.2016.08.025 |
[97] | 邓九胜, 张炜, 朱荣松, 等. 基于土壤有效磷水稻磷肥施用推荐体系的探讨. 西北农业学报, 2011, 20(2):81-84. |
[98] |
Bai S S, Kang Y H, Wan S Q. Drip fertigation regimes for winter wheat in the North China Plain. Agricultural Water Management, 2019, 228:105885.
doi: 10.1016/j.agwat.2019.105885 |
[99] | 张晶, 党建友, 张定一, 等. 微喷灌水肥一体化小麦磷钾肥减施稳产提质研究. 中国土壤与肥料, 2018(5):115-121. |
[100] |
Zhao Y, Luo J H, Chen X Q, et al. Greenhouse tomato-cucumber yield and soil N leaching as affected by reducing N rate and adding manure:a case study in the Yellow River Irrigation Region China. Nutrient Cycling in Agroecosystems, 2012, 94(2/3):221-235.
doi: 10.1007/s10705-012-9535-8 |
[101] |
Luis L, Gilles B, Bruna G, et al. 50 year trends in nitrogen use efficiency of world cropping systems:the relationship between yield and nitrogen input to cropland. Environmental Research Letters, 2014, 9(10):105011.
doi: 10.1088/1748-9326/9/10/105011 |
[102] |
Lv H F, Lin S, Wang Y F, et al. Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system. Environmental Pollution, 2019, 245:694-701.
doi: 10.1016/j.envpol.2018.11.042 |
[103] |
Ju M, Zhang H L, Shi W M. Optimizing nitrogen input to reduce nitrate leaching loss in greenhouse vegetable production. Agricultural Water Management, 2012, 111:53-59.
doi: 10.1016/j.agwat.2012.05.003 |
[104] | 王全九, 王文焰, 吕殿青, 等. 膜下滴灌盐碱地水盐运移特征研究. 农业工程学报, 2000, 16(4):54-57. |
[105] |
Dumroese R K, Page-Dumroese D S, Salifu K F, et al. Exponential fertilization of Pinus monticola seedlings:nutrient uptake efficiency,leaching fractions,and early outplanting performance. Canadian Journal of Forest Research, 2005, 35(12):2961-2967.
doi: 10.1139/x05-226 |
[106] |
Zhang F, Cui Z, Fan M, et al. Integrated soil-crop system management:reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. Journal of Environmental Quality, 2011, 40:1051-1057.
doi: 10.2134/jeq2010.0292 |
[107] | 宰松梅. 水肥一体化灌溉模式下土壤水分养分运移规律研究. 杨凌:西北农林科技大学, 2010. |
[108] | 李熙婷. 河套灌区膜下滴灌小麦水肥盐动态变化与灌溉制度优化研究. 呼和浩特:内蒙古农业大学, 2016. |
[109] | 彭雄彪. 滴灌施钾肥土壤水肥分布及运移规律研究. 杨凌:西北农林科技大学, 2020. |
[110] | 宜丽宏. 不同水氮模式对冬小麦―夏玉米农田水分耗散特征的影响. 临汾:山西师范大学, 2018. |
[111] |
He Y L, Xi B Y, Li G D, et al. Influence of drip irrigation,nitrogen fertigation,and precipitation on soil water and nitrogen distribution,tree seasonal growth and nitrogen uptake in young triploid poplar (Populus tomentosa) plantations. Agricultural Water Management, 2021, 243:106460.
doi: 10.1016/j.agwat.2020.106460 |
[112] |
Zhao Y M, Lv H F, Qasim W, et al. Drip fertigation with straw incorporation significantly reduces N2O emission and N leaching while maintaining high vegetable yields in solar greenhouse production. Environmental Pollution, 2021, 273:116521.
doi: 10.1016/j.envpol.2021.116521 |
[113] |
Lv H F, Zhao Y M, Wang Y F, et al. Conventional flooding irrigation and over fertilization drives soil pH decrease not only in the top- but also in subsoil layers in solar greenhouse vegetable production systems. Geoderma, 2020, 363:114156.
doi: 10.1016/j.geoderma.2019.114156 |
[114] |
Shen W S, Lin X G, Shi W M, et al. Higher rates of nitrogen fertilization decrease soil enzyme activities,microbial functional diversity and nitrification capacity in a Chinese polytunnel greenhouse vegetable land. Plant and Soil, 2010, 337(1/2):137-150.
doi: 10.1007/s11104-010-0511-2 |
[115] |
李亚莉, 赖宁, 乔江飞, 等. 不同滴灌年限小麦土壤速效养分空间变异特征. 新疆农业科学, 2018, 55(11):2069-2079.
doi: 10.6048/j.issn.1001-4330.2018.11.014 |
[116] | 陈静. 华北小麦-玉米滴灌施肥下水氮运移和N2O排放研究. 北京:中国农业科学院, 2014. |
[117] | 冀雅珍, 武海霞. 膜下滴灌条件下KNO3肥液浓度对土壤水盐运移的影响. 水利水电快报, 2017, 38(4):26-29. |
[118] |
Smith D R, Hernandez-Ramirez G, Armstrong S D, et al. Fertilizer and tillage management impacts on non-carbon-dioxide greenhouse gas emissions. Soil Science Society of America Journal, 2011, 75(3):1070-1082.
doi: 10.2136/sssaj2009.0354 |
[119] |
Eskild H B, Smith P, John R P. Decoupling of greenhouse gas emissions from global agricultural production:1970-2050. Global Change Biology, 2016, 22(2):763-781.
doi: 10.1111/gcb.13120 |
[120] | Bouwman A F, Boumans L J M, Batjes N H, Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochemical Cycles, 2002, 16(4):1080. |
[121] | Smith P, Daniel M, Cai Z C, et al. Greenhouse gas mitigation in agriculture. Biological Sciences, 2008, 363(1492):789-813. |
[122] |
Dong-Gill K, Hernandez-Ramirez G, Giltrap D. Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input:a meta-analysis. Agriculture, Ecosystems and Environment, 2013, 168:53-65.
doi: 10.1016/j.agee.2012.02.021 |
[123] | Skiba U, Smith K A, Fowler D. Nitrification and denitrification as sources of nitric oxide and nitrous oxide in a sandy loam soil. Pergamon, 1993, 25(11):1527-1536. |
[124] |
Hernandez-Ramirez G, Brouder S M, Smith D R, et al. Nitrous oxide production in an eastern corn belt soil:sources and redox range. Soil Science Society of America Journal, 2009, 73(4):1182-1191.
doi: 10.2136/sssaj2008.0183 |
[125] |
Bijesh M, Rodney T V, Carl R. Fertilizer and irrigation management effects on nitrous oxide emissions and nitrate leaching. Agronomy Journal, 2014, 106(2):703-714.
doi: 10.2134/agronj2013.0179 |
[126] |
Lin S S, Hernandez-Ramirez G, Len K, et al. Timing of manure injection and nitrification inhibitors impacts on nitrous oxide emissions and nitrogen transformations in a barley crop. Soil Science Society of America Journal, 2017, 81(6):1595-1605.
doi: 10.2136/sssaj2017.03.0093 |
[127] |
Judith N, Athyna N C, Noura Z, et al. Spring wheat yield and quality related to soil texture and nitrogen fertilization. Agronomy Journal, 2012, 104(3):589-599.
doi: 10.2134/agronj2011.0342 |
[128] |
Leanne L C, Hernandez-Ramirez G, Miles D, et al. Can fertigation reduce nitrous oxide emissions from wheat and canola fields?. Science of the Total Environment, 2020, 745:141014.
doi: 10.1016/j.scitotenv.2020.141014 |
[129] |
Tian D, Zhang Y Y, Zhou Y Z, et al. Effect of nitrification inhibitors on mitigating N2O and NO emissions from an agricultural field under drip fertigation in the North China Plain. Science of the Total Environment, 2017, 598:87-96.
doi: 10.1016/j.scitotenv.2017.03.220 |
[130] |
Tian D, Zhang Y Y, Mu Y J, et al. The effect of drip irrigation and drip fertigation on N2O and NO emissions,water saving and grain yields in a maize field in the North China Plain. Science of the Total Environment, 2017, 575:1034-1040.
doi: 10.1016/j.scitotenv.2016.09.166 |
[131] |
Kennedy T L, Suddick E C, Johan S. Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation. Agriculture, Ecosystems and Environment, 2013, 170:16-27.
doi: 10.1016/j.agee.2013.02.002 |
[132] |
Zhang X, Meng F Q, Li H, et al. Optimized fertigation maintains high yield and mitigates N2O and NO emissions in an intensified wheat-maize cropping system. Agricultural Water Management, 2019, 211:26-36.
doi: 10.1016/j.agwat.2018.09.045 |
[133] |
Tian D, Zhang Y Y, Mu Y J, et al. Effect of N fertilizer types on N2O and NO emissions under drip fertigation from an agricultural field in the North China Plain. Science of the Total Environment, 2020, 715:136903.
doi: 10.1016/j.scitotenv.2020.136903 |
[1] | Yang Cheng, Du Simeng, Zhang Deqi, Shi Yanhua, Li Xiangdong, Shao Yunhui, Fang Baoting, Wang Hanfang. Evaluation of Wheat Freezing Damage during Overwintering Period Based on Chlorophyll Fluorescence [J]. Crops, 2022, 38(1): 154-160. |
[2] | Bai Junbing, Wang Yanjie, Wang Demei, Yang Yushuang, Wang Yujiao, Guo Dandan, Liu Zhewen, Chang Xuhong, Shi Shubing, Zhao Guangcai. Response of Yield and Quality of Strong Gluten Wheat to Different Soil Conditions and Nitrogen Levels [J]. Crops, 2022, 38(1): 167-173. |
[3] | Zhang Shengquan, Ye Zhijie, Ren Liping, Gao Xinhuan, Wang Zheng, Yang Yongli, Mu Lei, Dong Yanhua, Chen Zhaobo. Analysis of Authorized Hybrid Wheat Varieties in China since The Tenth Five-Year Plan [J]. Crops, 2022, 38(1): 38-43. |
[4] | Song Quanhao, Jin Yan, Song Jiajing, Bai Dong, Zhao Lishang, Chen Jie, Zhu Tongquan. Evaluation the Breeding Utilizability of Synthetic Hexaploid Wheat in Huang-Huai Area [J]. Crops, 2022, 38(1): 56-64. |
[5] | Yin Guifang, Duan Ying, Yang Xiaolin, Cai Suyun, Wang Yanqing, Lu Wenjie, Sun Daowang, He Runli, Wang Lihua. Cloning and Bioinformatics Analysis of FtC4H Gene from Tartary Buckwheat [J]. Crops, 2022, 38(1): 77-83. |
[6] | Ge Changbin, Zhang Hongtao, Liao Ping’an, Cao Yanyan, Huang Jie, Qiao Jiliang, Guo Chunqiang, Wang Jun, Qin Suyan, Zhang Lan, Xia Mingcong, Cheng Bin, Zhang Liyi. Evaluation of Resistance to Fusarium Head Blight and Analysis of Agronomic Traits in Guixie 3-Derived Wheat Varieties (Lines) [J]. Crops, 2022, 38(1): 96-101. |
[7] | Wang Rui, Chen Shiyong, Chen Zhiqing, Cui Peiyuan, Lu Hao, Yang Yanju, Zhang Haipeng, Zhang Hongcheng. Effects of Root Exudates on Key Processes of Soil Nitrogen Cycling: A Review [J]. Crops, 2021, 37(6): 1-8. |
[8] | Su Wenping, Wang Huan, Aimulaguli·Kuerban , Zhao Xinlin, Xue Lihua, Zhang Jianxin, Liu Jun, Sun Shiren. Comparison of Growth Characteristics and Yields of Different Wheat Varieties Planted in the Approaching Winter in Northern Xinjiang [J]. Crops, 2021, 37(6): 108-114. |
[9] | Yang Na, Xi Jilong, Wang Ke, Xi Tianyuan, Zhang Jiancheng, Yao Jingzhen, Wang Jian. Effects of Spring Irrigation on Yield and Water Utilization of Late-Sowing Winter Wheat in Southern Shanxi [J]. Crops, 2021, 37(6): 115-121. |
[10] | Guo Mingming, Wang Kangjun, Zhang Guangxu, Sun Zhongwei, Li Jun, Zhang Yueshu, Dai Dandan, Chen Feng, Fan Jiwei. Regulation of Sowing Date and Row Spacing on Grain Yield and Quality of Wheat [J]. Crops, 2021, 37(6): 152-158. |
[11] | Wang Xin, Wang Cai. Effects of Different Sowing Dates and Seeding Rates on the Growth Characteristics and Yield of Winter Wheat [J]. Crops, 2021, 37(6): 182-188. |
[12] | Ren Wenbin, Wang Qian, Wu Cuicui, Xie Sangang. Observation on Pollen Morphology of F-Type Male Sterile Lines and SQ-1 Induced Sterile Plants in Wheat by Scanning Electron Microscope [J]. Crops, 2021, 37(6): 46-50. |
[13] | Gao Tiantian, Wang Demei, Wang Yanjie, Yang Yushuang, Chang Xuhong, Zhao Guangcai. Response of Different Spring Wheat Varieties to Nitrogen Treatment [J]. Crops, 2021, 37(6): 67-71. |
[14] | Wu Xinyu, Liu Zhenyang, Li Haiye, Zheng Yi, Tang Li, Xiao Jingxiu. Effects of Nitrogen Application and Intercropping on Nodule Formation and Nitrogen Uptake and Accumulation in Faba Bean [J]. Crops, 2021, 37(5): 120-127. |
[15] | Cao Lixia, Zhou Haitao, Zhang Xinjun, Shi Bihong, Zhang Lixia, Li Yunxia, Liu Junxin, Bai Jing, Zhao Shifeng. Effects of Sowing Rates on Yield of Two Buckwheat Varieties in Northern Hebei [J]. Crops, 2021, 37(5): 140-145. |
|