Crops ›› 2022, Vol. 38 ›› Issue (1): 167-173.doi: 10.16035/j.issn.1001-7283.2022.01.025

Previous Articles     Next Articles

Response of Yield and Quality of Strong Gluten Wheat to Different Soil Conditions and Nitrogen Levels

Bai Junbing1,2(), Wang Yanjie2, Wang Demei2, Yang Yushuang2, Wang Yujiao1,2, Guo Dandan1,2, Liu Zhewen1,2, Chang Xuhong2(), Shi Shubing1(), Zhao Guangcai2()   

  1. 1College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-06-16 Revised:2021-12-09 Online:2022-02-15 Published:2022-02-16
  • Contact: Chang Xuhong,Shi Shubing,Zhao Guangcai E-mail:2071895102@qq.com;changxuhong@caas.cn;shubshi@sina.com;zhaoguangcai@caas.cn

Abstract:

Through studying the effects of nitrogen fertilizer application on the yield and quality of strong gluten wheat under the conditions of fluvo-aquic soil and black soil, it provided scientific basis and technical reference for high-yield and high-quality wheat cultivation. The experiment was carried out in the greenhouse of the Institute of Crop Sciences of Chinese Academy of Agricultural Sciences from 2020 to 2021. The strong gluten winter wheat variety Zhongmai 578 was used as the material. Two soil conditions and five nitrogen application treatments were set up in pot culture.The results showed that the SPAD value of flag leaf, grain length and width, 1000-grain weight, grain number per ear, grain yield and protein yield of wheat in the whole period after anthesis in black soil were better than those in fluvo-aquic soil under the same nitrogen application, while the content of grain protein and its components in fluvo-aquic soil was better than that in black soil. Under the same soil conditions, the decrease rate of SPAD value of wheat flag leaf was slowed down and the effective photosynthetic period was prolonged with the increase of nitrogen application rate; grain length and width, 1000-grain weight, grain number per ear, grain yield and protein yield increased first and then decreased with the increase of nitrogen application rate, while grain protein content increased with the increase of nitrogen application rate. In conclusion, under the basic nutrient conditions of this experiment, the grain yield and protein yield reached the optimal values when 2g urea was applied in each pot.

Key words: Strong gluten wheat, Soil type, Nitrogen fertilizer, Yield, Quality

Table 1

Basic nutrient status of different types of soil"

土壤类型
Soil type
有机质
Organic matter
(g/kg)
全氮
Total nitrogen
(g/kg)
碱解氮
Alkaline hydrolysis nitrogen
(mg/kg)
速效磷
Available phosphorus
(mg/kg)
速效钾
Available potassium
(mg/kg)
潮土(A1) 0.71 0.59 41.92 24.78 85.52
黑土(A2) 3.51 2.11 94.03 69.57 140.39

Fig.1

SPAD values of flag leaves after anthesis of wheat under different treatments"

Fig.2

Effects of different treatments on grain length, width and perimeter Different small letters indicate the significant difference between treatment combinations (P < 0.05), the same below"

Table 2

Correlation analysis between grain length, width and perimeter with 1000-grain weight of wheat"

指标Index 千粒重1000-grain weight
籽粒长Grain length 0.77**
籽粒宽Grain width 0.96**
籽粒周长Grain perimeter 0.92**

Table 3

Effects of different treatment combinations on wheat yield and its compositions"

处理Treatment 穗粒数Grain number per ear 千粒重1000-grain weight (g) 籽粒产量(g/盆)Grain yield (g/pot)
土壤类型(A) A1 15.57b 32.94b 4.27b
Soil type A2 20.13a 39.04a 6.33a
施氮量(B) B1 13.35e 36.04b 3.76c
Nitrogen application rate B2 18.52c 38.65a 5.29b
B3 20.16a 38.14a 7.04a
B4 19.22b 35.21c 5.56b
B5 18.00d 31.92d 4.83bc
土壤×施氮量(A×B) A1B1 7.07f 36.29c 2.46e
Soil×nitrogen application A1B2 16.97e 34.20d 4.43cd
A1B3 18.76c 36.24c 6.00bc
A1B4 17.24e 30.75e 4.39cd
A1B5 17.83d 27.21f 4.05de
A2B1 19.63b 35.79c 5.05bcd
A2B2 20.07b 43.10a 6.15bc
A2B3 21.56a 40.03b 8.08a
A2B4 21.20a 39.67b 6.73ab
A2B5 18.17d 36.62c 5.61bcd
FF-value A 1798.12** 623.85** 31.81**
B 484.73** 96.66** 8.53**
A×B 379.60** 63.19** 0.27

Fig.3

Nitrogen distribution proportion of plant organs in wheat under different treatments"

Table 4

Effects of different treatments on grain protein, its component contents and protein yield of wheat"

处理
Treatment
清蛋白
Albumin (%)
球蛋白
Globulin (%)
醇溶蛋白
Gliadin (%)
谷蛋白
Glutenin (%)
谷蛋白/醇溶蛋白
Glutenin/gliadin
总蛋白含量
Total protein (%)
蛋白质产量(g/盆)
Protein yield (g/pot)
土壤类型(A) A1 3.37a 1.36a 4.76a 6.64a 1.40b 17.66a 0.76b
Soil type A2 3.01b 1.29a 4.14b 6.32a 1.53a 16.60b 1.05a
施氮量(B) B1 3.36a 1.38a 3.89d 5.69c 1.48a 15.68d 0.59c
Nitrogen application rate B2 3.32a 1.37a 4.20c 6.25b 1.49a 16.61c 0.88b
B3 3.23ab 1.33a 4.50bc 6.67ab 1.49a 17.38b 1.22a
B4 3.05b 1.30a 4.65b 6.76ab 1.45a 17.73ab 0.97b
B5 2.99b 1.27a 5.02a 7.05a 1.41a 18.26a 0.87b
土壤×施氮量(A×B) A1B1 3.49a 1.39a 4.12d 5.48d 1.33c 15.72d 0.39e
Soil×nitrogen application A1B2 3.46a 1.38a 4.40cd 6.24bc 1.42bc 16.81c 0.74d
A1B3 3.36a 1.37a 4.85b 6.95ab 1.43bc 18.01b 1.08abc
A1B4 3.31a 1.35a 5.02ab 7.03ab 1.40bc 18.39b 0.80cd
A1B5 3.23a 1.34a 5.41a 7.52a 1.39bc 19.36a 0.79cd
A2B1 3.22a 1.38a 3.65e 5.91cd 1.62a 15.64d 0.79cd
A2B2 3.18a 1.35a 4.01de 6.26bc 1.56ab 16.42cd 1.01bcd
A2B3 3.10ab 1.29a 4.15d 6.38bc 1.54ab 16.74c 1.35a
A2B4 2.79b 1.26a 4.28cd 6.48bc 1.52ab 17.06c 1.15ab
A2B5 2.75b 1.19a 4.63bc 6.57bc 1.42bc 17.15c 0.96bcd
FF-value A 22.28** 1.05 48.44** 4.26 16.17** 39.71** 25.93**
B 3.76* 0.37 19.02** 9.18** 0.84 29.08** 12.51**
A×B 0.57 0.14 0.81 2.45 1.61 5.10** 0.48
[1] 赵广才. 小麦优质高产栽培理论与技术. 北京: 中国农业科学技术出版社, 2018:1-2.
[2] 郑伟, 何萍, 高强, 等. 施氮对不同土壤肥力玉米氮素吸收和利用的影响. 植物营养与肥料学报, 2011, 17(2):301-309.
[3] 刘国伟, 任艳云, 闫璐, 等. 土壤肥力和灌水量组合对不同类型小麦光合特性及产量的影响. 农学学报, 2017, 7(6):27-33.
[4] 裴艳婷, 李娜娜, 丁汉凤, 等. 不同土壤肥力对各年代小麦品种产量及农艺性状的影响. 中国农学通报, 2018, 34(4):1-8.
[5] 张铭, 蒋达, 缪瑞林, 等. 土壤肥力与施氮量对小麦籽粒品质的影响. 麦类作物学报, 2009, 29(6):1065-1071.
[6] 赵淑章, 季书勤, 王绍中, 等. 不同类型土壤与强筋小麦品质和产量的关系. 河南农业科学, 2004(7):52-53.
[7] 朱英杰, 刘富启, 张燕, 等. 不同土壤条件下氮肥处理对小麦产量及品质的影响. 作物杂志, 2020(3):184-190.
[8] 张艳华, 常旭虹, 王德梅, 等. 不同土壤条件下追施锌肥对小麦产量及品质的影响. 作物杂志, 2019(5):109-113.
[9] 王丽娜, 常旭虹, 王德梅, 等. 不同土壤条件下追施硼肥对小麦产量和品质的影响. 作物杂志, 2019(6):94-98.
[10] Foulkes M J, Hawkesford M J, Barraclough P B, et al. Identifying traits to improve the nitrogen economy of wheat:Recent advances and future prospects. Field Crops Research, 2009, 114(3):329-342.
doi: 10.1016/j.fcr.2009.09.005
[11] Foulkes M J, Sylvester-Bradley R, Scott R K, et al. Evidence for differences between winter wheat cultivars in acquisition of soil mineral nitrogen and uptake and utilization of applied fertilizer nitrogen. The Journal of Agricultural Science, 1998, 130:20-44.
[12] Zhang Y, Dai X L, Jia D Y, et al. Effects of plant density on grain yield,protein size distribution,and bread making quality of winter wheat grown under two nitrogen fertilisation rates. European Journal of Agronomy, 2016, 73:1-10.
doi: 10.1016/j.eja.2015.11.015
[13] Cui Z, Zhang F, Chen X, et al. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test. Field Crops Research, 2008, 105(1):48-55.
doi: 10.1016/j.fcr.2007.07.008
[14] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008(5):915-924.
[15] 徐云连, 吴靓, 吴蔚君, 等. 施氮对小麦产量和氮素径流损失及氮肥投入阈值的研究. 水土保持学报, 2018, 32(2):246-251.
[16] Pask A, Sylvester-Bradley R, Jamieson P D, et al. Quantifying how winter wheat crops accumulate and use nitrogen reserves during growth. Field Crops Research, 2012, 126:104-118.
doi: 10.1016/j.fcr.2011.09.021
[17] 郭培武, 石玉, 赵俊晔, 等. 水肥一体化条件下施氮量对小麦旗叶叶绿素荧光特性及产量的影响. 麦类作物学报, 2018, 38(8):988-994.
[18] 李金才, 魏凤珍. 氮素营养对小麦产量和籽粒蛋白质及组分含量的影响. 中国粮油学报, 2001(2):6-8.
[19] 杜盼, 张娟娟, 郭伟, 等. 施氮对不同肥力土壤小麦氮营养和产量的影响. 植物营养与肥料学报, 2019, 25(2):176-186.
[20] 郭明明, 赵广才, 郭文善, 等. 追氮时期和施钾量对小麦氮素吸收运转的调控. 植物营养与肥料学报, 2016, 22(3):590-597.
[21] 赵广才, 常旭虹, 杨玉双, 等. 氮磷钾运筹对不同小麦品种产量和品质的调节效应. 麦类作物学报, 2011, 31(1):106-112.
[22] 徐恒永, 赵振东, 刘爱峰, 等. 氮肥对优质专用小麦产量和品质的影响Ⅱ氮肥对小麦品质的影响. 山东农业科学, 2001(2):13-17.
[23] 张秀, 朱文美, 代兴龙, 等. 施氮量对强筋小麦产量、氮素利用率和品质的影响. 麦类作物学报, 2018, 38(8):963-969.
[24] 赵犇, 姚霞, 田永超, 等. 基于上部叶片SPAD值估算小麦氮营养指数. 生态学报, 2013, 33(3):916-924.
[25] 魏益民, 张国权, 欧阳韶晖, 等. 小麦品种单籽粒性状的研究. 中国粮油学报, 1999(4):1-3.
[26] 鞠正春. 施氮量和追氮时期对小麦产量和品质的影响及其生理基础. 泰安:山东农业大学, 2006.
[27] 同延安, 赵营, 赵护兵, 等. 施氮量对冬小麦氮素吸收、转运及产量的影响. 植物营养与肥料学报, 2007, 13(1):64-69.
[28] 刘孝成, 赵广才, 石书兵, 等. 肥水调控对冬小麦产量及籽粒蛋白质组分的影响. 核农学报, 2017, 31(7):1404-1411.
[29] 马政华, 刘芳, 介晓磊, 等. 不同土壤类型对不同筋力型小麦产量和品质的影响. 土壤通报, 2010, 41(4):898-903.
[30] 李金娜, 姜丽娜, 岳影, 等. 灌溉方式和施氮量对冬小麦籽粒氮代谢酶和蛋白质产量的影响. 麦类作物学报, 2018, 38(7):817-824.
[1] Shi Xionggao, Pei Xuexia, Dang Jianyou, Zhang Dingyi. Research Progress on High-Yield, High-Quality, High-Efficiency and Ecology Cultivation of Wheat Micro-Sprinkling and Drip Fertigation [J]. Crops, 2022, 38(1): 1-10.
[2] Liu Menghong, Wang Zhijun, Li Hongyu, Zhao Haicheng, Lü Yandong. Effects of Fertilization Method and Nitrogen Application Rate on Yield, Quality and Nitrogen Utilization of Rice in Cold Region [J]. Crops, 2022, 38(1): 102-109.
[3] He Yuxuan, Li Yajuan, Zhou Mingzhuo, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Calcium Peroxide Application on Yield and Greenhouse Gas Emissions under Full-Rate Straw Returning in a Double Rice-Cropping System [J]. Crops, 2022, 38(1): 116-123.
[4] Cui Shiyou, Zhang Yang, Zhai Caijiao, Dong Shiqi, Zhang Jiao, Chen Pengjun, Han Jijun, Dai Qigen. Performance of Yield and Quality of Japonica Rice under Brackish Water Irrigation on the Reclaimed Tidal Flat [J]. Crops, 2022, 38(1): 137-141.
[5] Liu Zigang, Lu Haibo, Wu Minhua, Zhao Haichao, Wei Dong, Huang Zhihong. Effects of Chemical Regulator of Yuhuangjin on Lodging Resistance and Yield of Spring Maize [J]. Crops, 2022, 38(1): 142-146.
[6] Jin Dan, Feng Naijie, Zheng Dianfeng, Wang Shiya. Effects of 5-Aminolevulinic Acid on Carbon Metabolism and Yield of Mung Bean [J]. Crops, 2022, 38(1): 147-153.
[7] Xie Huimin, Wu Ke, Liu Wenqi, Wei Guoliang, Lu Xian, Li Zhuanglin, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Partial Substitution of Seaweed Fertilizers and Microbial Inoculant for Chemical Fertilizer on Rice Yield and Its Components [J]. Crops, 2022, 38(1): 161-166.
[8] Du Xin, Li Bo, Mao Luxiao, Chen Wei, Zhang Yuxian, Cao Liang. Effects of Melatonin on Yield and AsA-GSH Cycle in Soybean under Drought Stress [J]. Crops, 2022, 38(1): 174-178.
[9] Wang Qingbin, Lu Jiechun, Peng Chun’e, Meng Hui, Liu Zhiguo, Wang Hongfeng, Zhang Min. Effects of Different Nitrogen Application Rates Combined with Extracts of Paecilomyces variotii (ZNC) on Growth and Nitrogen Uptake of Pakchoi [J]. Crops, 2022, 38(1): 190-195.
[10] Yang Zhinan, Huang Jinwen, Han Fanxiang, Li Yawei, Ma Jiantao, Chai Shouxi, Cheng Hongbo, Yang Delong, Chang Lei. Effects of Straw Strip Mulching on Soil Temperature and Yield of Potato Field in Rain-Fed Region in Northwest China [J]. Crops, 2022, 38(1): 196-204.
[11] Li Runqing, Shen Yong, Zhu Kuanyu, Wang Zhiqin, Yang Jianchang. Effects of Nitrogen Application Rates on the Grain Yield, Starch RVA Profile Characteristics and Physicochemical Properties of Super Rice Nanjing 9108 [J]. Crops, 2022, 38(1): 205-212.
[12] Feng Sufen, Liu Yuanjian, Xu Ruiqi, Zhang Wei. Analysis on Main Traits of Fresh Corn Varieties Recently Approved in Yunnan Province [J]. Crops, 2022, 38(1): 220-226.
[13] Zhang Shengquan, Ye Zhijie, Ren Liping, Gao Xinhuan, Wang Zheng, Yang Yongli, Mu Lei, Dong Yanhua, Chen Zhaobo. Analysis of Authorized Hybrid Wheat Varieties in China since The Tenth Five-Year Plan [J]. Crops, 2022, 38(1): 38-43.
[14] Gao Fengyun, Siqin Bateer, Zhou Yu, Jia Xiaoyun, Su Shaofeng, Zhao Xiaoqing, Jin Xiaolei. Association Analysis of Crude Fat and Fatty Acid Components in Flax Based on SSR Markers [J]. Crops, 2022, 38(1): 44-49.
[15] Song Quanhao, Jin Yan, Song Jiajing, Bai Dong, Zhao Lishang, Chen Jie, Zhu Tongquan. Evaluation the Breeding Utilizability of Synthetic Hexaploid Wheat in Huang-Huai Area [J]. Crops, 2022, 38(1): 56-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!