Crops ›› 2022, Vol. 38 ›› Issue (1): 154-160.doi: 10.16035/j.issn.1001-7283.2022.01.023

Previous Articles     Next Articles

Evaluation of Wheat Freezing Damage during Overwintering Period Based on Chlorophyll Fluorescence

Yang Cheng(), Du Simeng, Zhang Deqi, Shi Yanhua, Li Xiangdong(), Shao Yunhui, Fang Baoting, Wang Hanfang   

  1. Wheat Research Institute, Henan Academy of Agricultural Sciences/National Laboratory of Wheat Engineering/Key Laboratory of Wheat Biology and Genetic Breeding in Central Huang-Huai Region, Ministry of Agriculture and Rural Affairs/Scientific Observing and Experimental Station of Crop Cultivation in Central Plains, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory of Wheat Biology, Zhengzhou 450000, Henan, China
  • Received:2021-01-13 Revised:2021-05-07 Online:2022-02-15 Published:2022-02-16
  • Contact: Li Xiangdong E-mail:luckytiger.com@163.com;hnlxd@126.com

Abstract:

Freezing damage is a common natural disaster in wheat production. At present, the methods for non-destructive evaluation of freezing damage of wheat are still very limited. Rapid chlorophyll fluorescence induction kinetics curve contains abundant information about photosynthesis, which is a common method to study environment stress. By screening suitable chlorophyll fluorescence parameters to evaluate the cold resistance of wheat, it provides technical support for the cold resistance mechanism, overwintering management and cold resistance breeding of wheat. In this study, by investigating the correlation between 34 commonly used chlorophyll fluorescence induction kinetic parameters and frost damage degree of 33 wheat varieties in the year of freezing injury occurrence in overwintering period, TRo/CSm was screened out as an indicator with significant positive correlation with frost damage degree of wheat, and the correlation coefficient reached 0.636, which correlation was better than the previous chlorophyll fluorescence index Fv/Fm. It indicates that the chlorophyll fluorescence parameter TRo/CSm can be used to evaluate the cold resistance of wheat. The findings of this study provided strong support for winter wheat overwintering management and cold resistance breeding.

Key words: Wheat, Freezing damage, Cold resistance, Chlorophyll fluorescence

Table 1

The wheat varieties tested"

编号
Number
品种
Variety
编号
Number
品种
Variety
1 碧玛1号Bima 1 18 矮抗58 Aikang 58
2 碧玛4号Bima 4 19 郑麦366 Zhengmai 366
3 阿夫Afu 20 周麦22 Zhoumai 22
4 阿勃Abo 21 郑麦7698 Zhengmai 7698
5 郑州7023 Zhengzhou 7023 22 矮丰3号Aifeng 3
6 丰产3号Fengchan 3 23 郑麦0856 Zhengmai 0856
7 郑州761 Zhengzhou 761 24 平原50 Pingyuan 50
8 西安8号Xi’an 8 25 葫芦头Hulutou
9 百农3217 Bainong 3217 26 大口麦Dakoumai
10 宝丰7228 Baofeng 7228 27 红和尚头Hongheshangtou
11 豫麦13 Yumai 13 28 西农6028 Xinong 6028
12 周麦9号Zhoumai 9 29 白玉皮Baiyupi
13 豫麦18 Yumai 18 30 偃展4110 Yanzhan 4110
14 豫麦49 Yumai 49 31 内乡5号Neixiang 5
15 郑麦9023 Zhengmai 9023 32 博爱7023 Boai 7023
16 兰考矮早8 Lankaoaizao 8 33 豫麦2号Yumai 2
17 周麦18 Zhoumai 18

Table 2

Parameters and formula of O-J-I-P curve"

参数
Parameter
计算方法
Method of calculation
Fm 暗适应后照光获得的最大荧光强度
Fo 叶绿素荧光诱导动力学曲线20μs的荧光强度
Fv 可变荧光,Fm-Fo
Area 叶绿素荧光诱导动力学曲线到Y轴的面积
t(Fm) 从暗适应后开始照光至达到最大荧光的时间
ϕPo ϕPo=Fv/Fm=(Fm-Fo)/Fm
Wk Wk=(F300μs-Fo)/(F2ms-Fo)
VJ VJ=(F2ms-Fo)/(Fm-Fo)
VI VI=(F30ms-Fo)/(Fm-Fo)
Ψo ψO=ETo/TRo=(1-VJ)
δRo δRo=(1-VI)/(1-VJ
ϕEo ϕEo=ETo/ABS
ϕDo ϕDo=1-ϕPo
ϕRo ϕRo=ϕPo(1-VI)
Sm Sm=Area/(Fm-Fo)
Mo Mo=4(F300μs-Fo)/(Fm-Fo)
N N=SmMo(1/VJ)
ABS/RC ABS/RC=Mo(1/VJ)(1/ϕPo)
TRo/RC TRo/RC=Mo(1/VJ)
ETo/RC ETo/RC=Mo(1/VJ)ψO
DIo/RC DIo/RC=(ABS/RC)-(TRo/RC)
ABS/CSo ABS/CSo=Fo
TRo/CSo TRo/CSo=Fm
ETo/CSo ETo/CSo=φEo(ABS/CSo)
DIo/CSo DIo/CSo=(ABS/CSo)-(TRo/CSo)
RC/CSo RC/CSo=φPo(VJ/Mo)(ABS/CSo)
ABS/CSm ABS/CSm=Fm
TRo/CSm TRo/CSm=φPo(ABS/CSm)
ETo/CSm ETo/CSm=φEo(ABS/CSm)
DIo/CSm DIo/CSm=(ABS/CSo)-(TRo/CSo)
RC/CSm RC/CSm=φPo(VJ/Mo)(ABS/CSm)
PIabs PIabs=(RC/ABS)[φPo/(1-φPo)][ψO/(1-ψO)]
PItatal PItatal=(RC/ABS)[φPo/(1-φPo)][ψO/(1-ψO)][ϕRo/ABS(1-ϕRo)]
VIP VIP=1-VI

Fig.1

Temperature change during wheat growth period in 2016-2017"

Fig.2

Distribution of daily minimum temperature frequencies from November 1st to December 15th in 2016"

Table 3

Investigation on freezing damage of different wheat varieties during over winter"

编号
Number
品种
Variety
株高
Plant height
(cm)
单株分蘖数
Tillers number
per plant
单株叶片数
Leaves number
per plant
单株受冻叶片数
Frozen leaves
per plant
叶片冻伤率
Leaf frostbite
rate
1 碧玛1号 21.26±4.09 9.25±1.50 27.00±4.58 3.20±2.39 0.12±0.10
2 碧玛4号 21.24±3.04 7.40±1.14 23.00±5.87 2.80±1.10 0.13±0.06
3 阿夫 20.50±2.47 11.00±0.71 29.80±2.59 4.40±1.52 0.15±0.06
4 阿勃 26.80±2.49 7.00±1.58 23.80±4.92 6.40±0.89 0.28±0.05
5 郑州7023 31.56±2.07 7.20±1.48 24.40±2.88 7.20±2.28 0.29±0.07
6 丰产3号 16.40±1.08 8.60±1.52 30.00±6.28 3.00±1.22 0.10±0.05
7 郑州761 22.70±3.63 6.00±1.58 22.40±5.03 5.60±1.95 0.24±0.04
8 西安8号 23.50±1.00 9.00±2.24 26.40±6.80 5.00±2.00 0.19±0.07
9 百农3217 22.40±3.14 8.40±1.14 24.20±1.30 4.40±1.67 0.18±0.06
10 宝丰7228 22.30±3.77 8.80±0.84 26.40±1.52 6.80±1.30 0.26±0.05
11 豫麦13 18.90±1.52 8.80±0.45 25.00±2.65 3.80±1.10 0.15±0.05
编号
Number
品种
Variety
株高
Plant height
(cm)
单株分蘖数
Number of tillers
per plant
单株叶片数
Number of leaves
per plant
单株受冻叶片数
Frozen leaves
per plant
叶片冻伤率
Leaf frostbite
rate
12 周麦9号 21.76±2.94 8.20±1.64 23.20±4.71 5.40±1.14 0.24±0.05
13 豫麦18 23.70±2.36 8.80±0.45 25.00±2.65 3.80±1.10 0.15±0.05
14 豫麦49 22.10±1.78 6.80±2.05 26.80±6.30 7.00±1.87 0.27±0.05
15 郑麦9023 19.36±1.97 9.80±2.17 34.40±2.51 3.80±0.45 0.11±0.02
16 兰考矮早8 24.38±1.25 7.33±1.53 24.60±3.44 5.40±1.14 0.26±0.07
17 周麦18 27.56±1.64 7.60±2.51 21.80±5.93 5.00±1.41 0.24±0.07
18 矮抗58 20.60±1.08 7.40±1.14 23.00±5.87 2.80±1.10 0.13±0.06
19 郑麦366 24.40±1.67 8.80±0.45 25.40±3.21 5.00±2.00 0.19±0.06
20 周麦22 23.80±2.20 8.60±1.67 21.60±2.70 4.20±1.64 0.20±0.08
21 郑麦7698 23.24±2.37 7.60±1.52 25.60±6.31 3.20±0.84 0.13±0.04
22 矮丰3号 18.80±1.15 7.40±2.07 27.80±5.45 6.20±1.10 0.23±0.06
23 郑麦0856 18.76±2.95 11.00±1.41 30.40±3.21 5.40±1.14 0.18±0.05
24 平原50 21.80±1.60 8.80±0.45 28.80±3.56 3.80±0.84 0.13±0.02
25 葫芦头 16.90±2.53 8.80±1.79 34.40±3.85 1.60±0.89 0.05±0.02
26 大口麦 20.40±2.27 9.20±1.92 26.20±5.85 3.60±1.34 0.14±0.03
27 红和尚头 23.80±2.51 8.20±1.92 22.80±2.49 3.20±1.30 0.14±0.06
28 西农6028 20.90±3.01 7.20±1.30 27.20±3.19 2.60±1.34 0.10±0.05
29 白玉皮 17.90±3.47 9.40±4.34 32.40±4.83 1.80±0.45 0.06±0.01
30 偃展4110 23.70±2.36 7.80±1.64 24.20±2.77 8.60±2.07 0.35±0.06
31 内乡5号 28.50±1.94 6.00±0.71 16.80±2.05 6.60±2.30 0.41±0.17
32 博爱7023 26.30±1.60 6.60±2.79 32.60±5.41 4.80±1.30 0.15±0.05
33 豫麦2号 22.90±1.24 7.40±1.52 25.60±3.21 6.60±0.89 0.26±0.04
最大值Maximum 31.56 11.00 34.40 8.60 0.41
最小值Minimum 16.40 6.00 16.80 1.60 0.05
平均值Average 22.40 8.18 25.82 4.61 0.19
变异系数Coefficient of variation 0.15 0.15 0.15 0.37 0.43

Fig.3

Histogram of leaf frostbite rates of wheat varieties"

Fig.4

Correlation between leaf frostbite rates and growth indexes of wheat"

Table 4

Seven fluorescence parameters with the strongest correlation with frostbite rates of wheat"

相关性
Correlation
参数
Parameter
相关系数
Correlation coefficient
P
P value
正相关 TRo/CSm 0.636 0.000
Positive correlation Fm 0.604 0.000
ETo/CSm 0.601 0.000
RC/CSm 0.589 0.000
Fv/Fm 0.582 0.000
负相关 DIo/RC -0.492 0.004
Negative correlation ϕDo -0.582 0.000

Fig.5

Correlation between chlorophyll fluorescence parameters and plant height of wheat"

[1] 杨程, 张德奇, 杜思梦, 等. 黑暗诱导衰老对不同年代冬小麦品种旗叶光系统Ⅱ功能的影响. 应用生态学报, 2018, 29(8):2525-2531.
[2] 慕臣英, 杨晓光, 杨婕, 等. 黄淮海地区不同冬春性小麦抗冻能力及冻害指标Ⅰ.隆冬期不同冬春性小麦抗冻能力比较. 应用生态学报, 2015, 26(10):3119-3125.
[3] 郭瑞, 周际, 杨帆, 等. 拔节孕穗期小麦干旱胁迫下生长代谢变化规律. 植物生态学报, 2016, 40(12):1319-1327.
doi: 10.17521/cjpe.2016.0107
[4] 汪敏, 王邵宇, 吴佳佳, 等. 花后阴雨对小麦籽粒淀粉合成和干物质积累的影响. 中国生态农业学报(中英文), 2020, 28(1):76-85.
[5] Sumit P, Ali B M, Kelly R, et al. Understanding the genetic basis of spike fertility to improve grain number harvest index and grain yield in wheat under high temperature stress environments. Frontiers in Plant Science, 2019(10):1481-1481.
[6] 霍治国, 尚莹, 邬定荣, 等. 中国小麦干热风灾害研究进展. 应用气象学报, 2019, 30(2):129-141.
[7] 高翔, 聂彦文, 杨占平, 等. 小麦冬季低温冷害的预防与补救措施初探. 河南农业科学, 2017, 46(7):26-29.
[8] 刘蕾蕾, 纪洪亭, 刘兵, 等. 拔节期和孕穗期低温处理对小麦叶片光合及叶绿素荧光特性的影响. 中国农业科学, 2018, 51(23):4434-4448.
[9] 余徐润, 郝朵, 顾清钦, 等. 春季低温对小麦颖果发育的影响. 麦类作物学报, 2020, 40(7):796-805.
[10] 高芸, 张玉雪, 马泉, 等. 春季低温对小麦花粉育性及粒数形成的影响. 作物学报, 2021, 47(1):104-115.
doi: 10.3724/SP.J.1006.2021.01031
[11] 冯汉青, 赵玲, 庞海龙, 等. 低温胁迫下交替呼吸途径对小麦幼根生长及氧化压力的调节作用. 西北师范大学学报(自然科学版), 2020, 56(4):78-83.
[12] 蒋志春, 辛艳, 吕志梅, 等. 冬小麦抗寒性级别划分与鉴定试验. 天津农林科技, 2005(1):7-8.
[13] 赵瑞玲, 赵勇, 徐渴, 等. 室内冷冻法鉴定小麦抗寒性的研究. 植物遗传资源学报, 2019, 20(2):284-296.
[14] 郑冬晓. 不同冬春性小麦低温灾害指标和可种植界限变化研究. 北京:中国农业大学, 2019.
[15] 朱根海, 刘祖祺, 朱培仁. 应用Logistic方程确定植物组织低温半致死温度的研究. 南京农业大学学报, 1986(3):11-16.
[16] 姜丽娜, 张黛静, 宋飞, 等. 不同品种小麦叶片对拔节期低温的生理响应及抗寒性评价. 生态学报, 2014, 34(15):4251-4261.
[17] 乔玉强, 曹承富, 杜世州, 等. 淮北地区小麦主栽品种对低温胁迫的响应及抗寒性评价. 中国农学通报, 2018, 34(27):22-27.
[18] 姚永伟, 韩巧霞, 张奥深, 等. 不同冬小麦品种拔节期抗冻性差异及相关基因表达分析. 麦类作物学报, 2020, 40(12):1-6.
[19] 李桐, 付连双, 刘鑫, 等. 冬小麦抗寒性鉴定的低温处理方式和鉴定指标的研究. 麦类作物学报, 2019, 39(7):851-858.
[20] 彭静, 杨雪, 罗梦娜, 等. 喷施组合型生长调节剂对不同品种小麦冬前分蘖和生长及抗寒性的影响. 干旱地区农业研究, 2019, 37(1):137-143.
[21] 王瑞霞, 闫长生, 张秀英, 等. 春季低温对小麦产量和光合特性的影响. 作物学报, 2018, 44(2):288-296.
[22] Oukarroum A, Schansker G, Strasser R J. Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiologia Plantarum, 2010, 137(2):188-199.
doi: 10.1111/ppl.2009.137.issue-2
[23] Zhang Z S, Yang C, Gao H Y, et al. The higher sensitivity of PSI to ROS results in lower chilling-light tolerance of photosystems in young leaves of cucumber. Journal of Photochemistry and Photobiology B:Biology, 2014, 137:127-134.
doi: 10.1016/j.jphotobiol.2013.12.012
[24] 金立桥, 车兴凯, 张子山, 等. 高温、强光下黄瓜叶片PSII供体侧和受体侧的伤害程度与快速荧光参数Wk变化的关系. 植物生理学报, 2015, 51(6):969-976.
[25] 张会慧, 龙静泓, 王均睿, 等. 不同种类盐胁迫对高梁幼苗生长及叶片光合机构功能的影响. 生态学杂志, 2019, 38(1):161-172.
[26] 王清坡 小麦越冬期黄苗干叶死棵原因及补救措施. 现代农业科技, 2015, 644(6):73-76.
[27] 刘冬梅, 贾筱文. 小麦黄苗弱苗形成原因及其防治对策. 陕西农业科学, 2013, 59(3):157-158.
[28] Yang C, Zhang Z S, Gao H Y, et al. Mechanisms by which the infection of Sclerotinia sclerotiorum (Lib.) de Bary affects the photosynthetic performance in tobacco leaves. BMC Plant Biology, 2014, 14(1):240.
doi: 10.1186/s12870-014-0240-4
[29] 李鹏民, 高辉远, Strasser R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005, 31(6):559-566.
[30] Strasser R J, Tsimilli-Michael M, Qiang S, et al. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochimica et Biophysica Acta, 2010, 1797:1313-1326.
doi: 10.1016/j.bbabio.2010.03.008 pmid: 20226756
[31] 张旭, 杨培珠, 谢虹, 等. 苏洲小麦冻害相关性状与环境因子的数量关系. 天津农业科学, 2012, 18(6):1-4.
[32] 代立芹, 李春强, 姚树然, 等. 气候变暖背景下河北省冬小麦冻害变化分析. 中国农业气象, 2010, 31(3):467-471.
[1] Shi Xionggao, Pei Xuexia, Dang Jianyou, Zhang Dingyi. Research Progress on High-Yield, High-Quality, High-Efficiency and Ecology Cultivation of Wheat Micro-Sprinkling and Drip Fertigation [J]. Crops, 2022, 38(1): 1-10.
[2] Bai Junbing, Wang Yanjie, Wang Demei, Yang Yushuang, Wang Yujiao, Guo Dandan, Liu Zhewen, Chang Xuhong, Shi Shubing, Zhao Guangcai. Response of Yield and Quality of Strong Gluten Wheat to Different Soil Conditions and Nitrogen Levels [J]. Crops, 2022, 38(1): 167-173.
[3] Zhang Shengquan, Ye Zhijie, Ren Liping, Gao Xinhuan, Wang Zheng, Yang Yongli, Mu Lei, Dong Yanhua, Chen Zhaobo. Analysis of Authorized Hybrid Wheat Varieties in China since The Tenth Five-Year Plan [J]. Crops, 2022, 38(1): 38-43.
[4] Song Quanhao, Jin Yan, Song Jiajing, Bai Dong, Zhao Lishang, Chen Jie, Zhu Tongquan. Evaluation the Breeding Utilizability of Synthetic Hexaploid Wheat in Huang-Huai Area [J]. Crops, 2022, 38(1): 56-64.
[5] Yin Guifang, Duan Ying, Yang Xiaolin, Cai Suyun, Wang Yanqing, Lu Wenjie, Sun Daowang, He Runli, Wang Lihua. Cloning and Bioinformatics Analysis of FtC4H Gene from Tartary Buckwheat [J]. Crops, 2022, 38(1): 77-83.
[6] Ge Changbin, Zhang Hongtao, Liao Ping’an, Cao Yanyan, Huang Jie, Qiao Jiliang, Guo Chunqiang, Wang Jun, Qin Suyan, Zhang Lan, Xia Mingcong, Cheng Bin, Zhang Liyi. Evaluation of Resistance to Fusarium Head Blight and Analysis of Agronomic Traits in Guixie 3-Derived Wheat Varieties (Lines) [J]. Crops, 2022, 38(1): 96-101.
[7] Su Wenping, Wang Huan, Aimulaguli·Kuerban , Zhao Xinlin, Xue Lihua, Zhang Jianxin, Liu Jun, Sun Shiren. Comparison of Growth Characteristics and Yields of Different Wheat Varieties Planted in the Approaching Winter in Northern Xinjiang [J]. Crops, 2021, 37(6): 108-114.
[8] Yang Na, Xi Jilong, Wang Ke, Xi Tianyuan, Zhang Jiancheng, Yao Jingzhen, Wang Jian. Effects of Spring Irrigation on Yield and Water Utilization of Late-Sowing Winter Wheat in Southern Shanxi [J]. Crops, 2021, 37(6): 115-121.
[9] Wang Qi, Li Meijuan, Zhang Jia’en, Tang Jiaxin, Zeng Wenjing, Zhou Lei, Yang Qingxin, Jiang Mingmin, Wu Jiayuan, Luo Mingzhu. Effects of Rice-Fish Co-Culture on Chlorophyll Fluorescence Characteristics and Yield in Rice [J]. Crops, 2021, 37(6): 145-151.
[10] Guo Mingming, Wang Kangjun, Zhang Guangxu, Sun Zhongwei, Li Jun, Zhang Yueshu, Dai Dandan, Chen Feng, Fan Jiwei. Regulation of Sowing Date and Row Spacing on Grain Yield and Quality of Wheat [J]. Crops, 2021, 37(6): 152-158.
[11] Wang Xin, Wang Cai. Effects of Different Sowing Dates and Seeding Rates on the Growth Characteristics and Yield of Winter Wheat [J]. Crops, 2021, 37(6): 182-188.
[12] Ren Wenbin, Wang Qian, Wu Cuicui, Xie Sangang. Observation on Pollen Morphology of F-Type Male Sterile Lines and SQ-1 Induced Sterile Plants in Wheat by Scanning Electron Microscope [J]. Crops, 2021, 37(6): 46-50.
[13] Gao Tiantian, Wang Demei, Wang Yanjie, Yang Yushuang, Chang Xuhong, Zhao Guangcai. Response of Different Spring Wheat Varieties to Nitrogen Treatment [J]. Crops, 2021, 37(6): 67-71.
[14] Wu Xinyu, Liu Zhenyang, Li Haiye, Zheng Yi, Tang Li, Xiao Jingxiu. Effects of Nitrogen Application and Intercropping on Nodule Formation and Nitrogen Uptake and Accumulation in Faba Bean [J]. Crops, 2021, 37(5): 120-127.
[15] Cao Lixia, Zhou Haitao, Zhang Xinjun, Shi Bihong, Zhang Lixia, Li Yunxia, Liu Junxin, Bai Jing, Zhao Shifeng. Effects of Sowing Rates on Yield of Two Buckwheat Varieties in Northern Hebei [J]. Crops, 2021, 37(5): 140-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!