Crops ›› 2022, Vol. 38 ›› Issue (4): 37-45.doi: 10.16035/j.issn.1001-7283.2022.04.006

Previous Articles     Next Articles

Identification and Expression Analysis of the ZoWRKY Family in Stress Responses Based on Transcriptome Data of Ginger (Zingiber officinale Roscoe)

Jiang Yusong1,2(), Li Honglei2, Li Zhexin2, Xu Xiaoyu1, Li Longyun3, Huang Mengjun1,2,3()   

  1. 1College of Resources and Environment, Southwest University, Chongqing 400715, China
    2Institute for Special Plants, Chongqing University of Arts and Sciences, Chongqing 402160, China
    3Institute of Chinese Materia Medica, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
  • Received:2021-03-31 Revised:2021-09-10 Online:2022-08-15 Published:2022-08-22
  • Contact: Huang Mengjun E-mail:jysong@126.com;hmj007@126.com

Abstract:

The WRKY proteins was a group of plant-specific transcription factors that shared WRKY conserved domains. They perform crucial roles in growth, development, signal transduction and stress response. Based on RNA-Seq data from ginger, researchers were able to identify and analyse members of the ZoWRKY family (Zingiber officinale Roscoe). The results showed that a toal of 78 putative ZoWRKY family members with complete ORF sequences were identified in 340.2Mb total nucleotides. These candidate genes could be clustered into three subfamilies:Ⅰ, Ⅱ and Ⅲ, respectively, and subfamilyⅡcould be further divided into Ⅱ-a,Ⅱ-b,Ⅱ-c,Ⅱ-d and Ⅱ-e group. The expression patterns of ZoWRKY genes showed that 21 members significantly responded to moisture stress, which were mainly distributed in Ⅱ-c,Ⅱ-d, and Ⅲ. After infected by Ralstonia solanacearum, 19 of ZoWRKY genes were differentially expressed, and were mainly distributed inⅠ,Ⅱ-a, and Ⅱ-c, which speculated that ZoWRKY has important function in stress responses. These results provide valuable information for further research of WRKY transcription factors in ginger, and can promote the resistance breeding and the yield increase of ginger.

Key words: Ginger, WRKY, Transcription factor, Stress response

Table 1

Statistics of transcriptome assembly in ginger"

项目Item 数值
Numerial number
双末端读长数PE read number 27 645 008
基因数Unigenes number 381 871
长度≥10 000bp的基因 Unigenes≥10 000bp 47
长度≥2000bp的基因 Unigenes≥2000bp 19 182
长度≥1000bp的基因 Unigenes≥1000bp 61 387
平均长度Average length (bp) 891
最大长度Maximum length (bp) 16 953
N50长度N50 length (bp) 1260
总长度Total length (bp) 340 247 061

Fig.1

Phylogenetic relationships of WRKY transcription factors in Zingiber and Arabidopsis “*”represent the AtWRKY transcription factor"

Fig.2

The sequence tags (a) and three-dimensional structural model (b) of the WRKY conserved domain in ZoWRKY proteins A sequence tag consists of a stack of letters at each position, the relative sizes of the letters indicate their frequency in the sequences, the total height of the letters depicts the information content of the position, in bits"

Fig.3

Sequence analysis of the WRKY conserved domain in ZoWRKY proteins Colors indicate the sequence simility and a darker color had a higher conservatism"

Table 2

Physicochemical analysis of amino acid in ZoWRKY transcription factors"

序号
Number
序列ID
Sequence ID
类型
Type
理论等电点
PI
相对分子质量
MW (kDa)
氨基酸长度
Amino acid length
α-螺旋
α-helix (%)
β-折叠
β-fold (%)
其他
Others (%)
1 Zoff119209 10.02 18 952.62 174 1.72 17.24 81.03
2 Zoff146524 6.05 47 740.90 433 1.15 15.70 83.14
3 Zoff199075 5.50 58 838.27 540 1.67 14.81 83.52
4 Zoff210606 7.36 49 275.37 451 2.22 15.96 81.82
5 Zoff227889 9.61 31 473.00 281 3.56 20.64 75.80
6 Zoff232809 5.19 43 100.82 391 2.05 9.97 87.98
7 Zoff238069 6.63 52 133.52 479 2.92 16.28 80.79
8 Zoff238668 5.59 60 829.58 537 2.79 16.01 81.19
9 Zoff239268 6.08 68 096.41 629 2.07 11.76 86.17
10 Zoff244943 5.93 53 600.22 492 4.27 14.02 81.71
11 Zoff253493 8.78 59 842.01 551 1.63 12.89 85.48
12 Zoff258147 6.26 78 055.61 718 3.48 11.56 84.96
13 Zoff284143 6.70 53 481.19 491 4.07 15.07 80.86
14 Zoff295642 5.41 75 059.16 690 3.19 11.01 85.80
15 Zoff193573 Ⅱ-a 7.66 17 444.56 151 27.15 12.58 60.26
16 Zoff197334 Ⅱ-a 9.74 32 649.05 307 7.82 13.68 78.50
17 Zoff202059 Ⅱ-a 8.77 23 689.98 208 22.12 16.83 61.06
18 Zoff204548 Ⅱ-a 9.33 24 747.76 218 20.64 14.22 65.14
19 Zoff224514 Ⅱ-a 9.18 22 334.06 198 16.67 13.64 69.70
20 Zoff224526 Ⅱ-a 6.72 22 023.94 199 21.11 16.58 62.31
序号
Number
序列ID
Sequence ID
类型
Type
理论等电点
PI
相对分子质量
MW (kDa)
氨基酸长度
Amino acid length
α-螺旋
α-helix (%)
β-折叠
β-fold (%)
其他
Others (%)
21 Zoff224527 Ⅱ-a 8.64 12 187.19 107 0.00 28.04 71.96
22 Zoff237180 Ⅱ-a 9.26 23 765.91 206 21.36 13.11 65.53
23 Zoff296350 Ⅱ-a 8.76 33 220.01 303 14.52 18.48 67.00
24 Zoff600680 Ⅱ-a 8.61 22 434.71 200 0.00 18.50 81.50
25 Zoff025802 Ⅱ-b 8.49 34 543.18 310 11.29 13.87 74.84
26 Zoff192125 Ⅱ-b 8.78 25 559.49 242 11.16 14.88 73.97
27 Zoff199392 Ⅱ-b 8.74 40 995.52 370 15.95 16.22 67.84
28 Zoff211883 Ⅱ-b 8.69 30 587.88 279 3.23 14.34 82.44
29 Zoff228302 Ⅱ-b 7.79 39 532.76 353 18.98 8.78 72.24
30 Zoff229635 Ⅱ-b 6.97 42 701.98 392 8.42 11.48 80.10
31 Zoff237181 Ⅱ-b 8.14 39 597.65 367 16.62 11.72 71.66
32 Zoff244550 Ⅱ-b 9.31 49 121.07 456 18.20 10.96 70.83
33 Zoff255712 Ⅱ-b 5.85 44 598.95 418 16.51 13.64 69.86
34 Zoff275612 Ⅱ-b 8.28 23 926.18 210 20.95 9.05 70.00
35 Zoff290487 Ⅱ-b 8.99 13 316.46 122 0.82 13.11 86.07
36 Zoff290491 Ⅱ-b 6.07 35 980.81 324 15.43 9.88 74.69
37 Zoff129734 Ⅱ-c 9.79 17 944.08 164 6.71 18.29 75.00
38 Zoff147627 Ⅱ-c 10.04 24 896.67 223 5.38 16.59 78.03
39 Zoff165467 Ⅱ-c 6.65 21 534.40 190 6.32 19.47 74.21
40 Zoff173677 Ⅱ-c 9.20 33 840.50 317 6.62 14.83 78.55
41 Zoff186957 Ⅱ-c 9.60 21 486.76 187 0.00 19.79 80.21
42 Zoff226774 Ⅱ-c 5.96 40 489.58 368 2.45 11.41 86.14
43 Zoff239221 Ⅱ-c 9.51 21 050.93 191 2.62 19.37 78.01
44 Zoff242316 Ⅱ-c 9.51 16 605.34 149 0.00 22.82 77.18
45 Zoff253853 Ⅱ-c 6.01 30 576.87 262 0.00 15.27 84.73
46 Zoff290286 Ⅱ-c 9.93 19 356.01 171 4.09 21.64 74.27
47 Zoff614319 Ⅱ-c 10.14 12 362.28 109 0.00 33.94 66.06
48 Zoff150646 Ⅱ-d 9.87 29 012.97 269 7.06 15.24 77.70
49 Zoff170651 Ⅱ-d 10.12 34 732.26 321 22.12 10.59 67.29
50 Zoff185798 Ⅱ-d 9.98 27 468.14 252 23.41 15.08 61.51
51 Zoff186024 Ⅱ-d 9.55 41 308.75 372 14.78 11.56 73.66
52 Zoff188265 Ⅱ-d 9.75 39 505.83 352 12.78 12.22 75.00
53 Zoff192006 Ⅱ-d 10.18 33 047.28 308 10.71 14.29 75.00
54 Zoff199154 Ⅱ-d 9.85 38 393.36 346 12.43 12.14 75.43
55 Zoff204858 Ⅱ-d 9.77 35 680.37 324 16.98 12.65 70.37
56 Zoff208722 Ⅱ-d 10.15 12 913.60 116 0.00 33.62 66.38
57 Zoff209584 Ⅱ-d 9.95 35 415.23 328 15.85 11.89 72.26
58 Zoff238579 Ⅱ-d 9.63 38 150.32 344 12.50 11.92 75.58
59 Zoff238581 Ⅱ-d 9.71 38 594.60 345 12.75 12.17 75.07
60 Zoff305561 Ⅱ-d 9.90 28 447.66 271 19.93 7.01 73.06
61 Zoff407487 Ⅱ-d 10.13 14 806.36 136 0.00 15.44 84.56
62 Zoff066597 Ⅱ-e 10.86 12 246.39 108 0.93 30.56 68.52
63 Zoff178498 Ⅱ-e 9.69 26 402.19 236 2.54 17.37 80.08
64 Zoff186238 Ⅱ-e 8.34 23 262.53 212 3.77 18.40 77.83
65 Zoff223289 Ⅱ-e 9.23 23 531.70 214 6.54 22.43 71.03
66 Zoff288806 Ⅱ-e 7.00 17 884.78 160 3.75 15.00 81.25
67 Zoff288813 Ⅱ-e 5.39 41 512.52 384 0.78 12.24 86.98
68 Zoff311150 Ⅱ-e 5.77 35 150.65 326 7.98 11.66 80.37
69 Zoff536230 Ⅱ-e 9.41 16 935.56 148 6.08 14.86 79.05
70 Zoff109660 7.71 29 460.72 261 21.46 9.96 68.58
71 Zoff160883 9.23 12 035.04 102 21.57 34.31 44.12
72 Zoff184272 9.35 24 075.94 215 26.51 16.28 57.21
73 Zoff188162 9.89 27 125.18 243 21.81 10.29 67.90
74 Zoff196199 5.96 39 530.50 355 16.90 9.86 73.24
75 Zoff217771 6.23 32 122.87 290 13.45 13.79 72.76
76 Zoff254593 8.79 20 719.11 183 3.28 19.13 77.60
77 Zoff301103 5.68 24 958.96 224 4.91 15.18 79.91
78 Zoff554263 9.79 11 591.13 104 30.77 8.65 60.58

Fig.4

Expression analysis of ZoWRKY gene under stress conditions (a) Gene ZoWRKY responses to soil moistures. (b) Gene ZoWRKY responses to infection of R. solanacearum. LUN: low soil moisture (WFPS: 10%); HUN: high soil moisture (WFPS: 40%); HI: high soil moisture (WFPS: 40%) and infection of R. solanacearum; log2FC value was calculated pairwise based on the expression level for each ZoWRKY gene, DEGs were identified between each two groups by edgeR with thresholds of log2FC ≥1 and FDR < 0.05; color scale increases from left to right with values -1.0 to 1.0; red arrow indicates up-regulated expression, green arrow indicates down-regulated expression"

[1] Allan A C, Hellens R P, Laing W A. MYB transcription factors that colour our fruit. Trends in Plant Science, 2008, 13(3):99-102.
doi: 10.1016/j.tplants.2007.11.012
[2] Liu J, Osbourn A, Ma P. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Molecular Plant, 2015, 8(5):689-708.
doi: 10.1016/j.molp.2015.03.012
[3] Welling A, Palva E T. Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiology, 2008, 147(3):1199-1211.
doi: 10.1104/pp.108.117812
[4] Zhao C, Zhang Z, Xie S, et al. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiology, 2016, 171(4):2744-2759.
doi: 10.1104/pp.16.00533
[5] Olsen A N, Ernst H A, Leggio L L, et al. NAC transcription factors:structurally distinct,functionally diverse. Trends in Plant Science, 2005, 10(2):79-87.
doi: 10.1016/j.tplants.2004.12.010
[6] Zhang Z, Dong J, Ji C, et al. NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proceedings of National Academy of Science of USA, 2019, 116(23):11223-11228.
[7] 黄幸, 丁峰, 彭宏祥, 等. 植物WRKY转录因子家族研究进展. 生物技术通报, 2019, 35(12):129-143.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0626
[8] Wu K L, Guo Z J, Wang H H, et al. The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Research, 2005, 12(1):9-26.
doi: 10.1093/dnares/12.1.9
[9] Rushton P J, Somssich I E, Ringler P, et al. WRKY transcription factors. Trends in Plant Science, 2010, 15(5):247-258.
doi: 10.1016/j.tplants.2010.02.006 pmid: 20304701
[10] Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors. Trends in Plant Science, 2000, 5(5):199-206.
pmid: 10785665
[11] Chen L, Zhang L, Li D, et al. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proceedings of National Academy of Science of USA, 2013, 110(21):1963-1971.
[12] Jiang J, Ma S, Ye N, et al. WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology, 2017, 59(2):86-101.
doi: 10.1111/jipb.12513
[13] Dang F F, Wang Y N, Yu L, et al. CaWRKY40,a WRKY protein of pepper,plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant,Cell and Environment, 2013, 36(4):757-774.
doi: 10.1111/pce.12011
[14] Merz P R, Moser T, Holl J, et al. The transcription factor VvWRKY 33 is involved in the regulation of grapevine (Vitis vinifera) defense against the oomycete pathogen Plasmopara viticola. Physiologia Plantarum, 2015, 153(3):365-380.
doi: 10.1111/ppl.12251
[15] Cormack R S, Eulgem T, Rushton P J, et al. Leucine zipper-containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley. Biochimica Biophysica Acta, 2002, 1576(1):92-100.
[16] Bakshi M, Oelmuller R. WRKY transcription factors:Jack of many trades in plants. Plant Signaling and Behavior, 2014, 9(2):e27700.
doi: 10.4161/psb.27700
[17] 徐惠娟, 郑蕊, 陈任, 等. 枸杞WRKY3基因克隆及组织表达分析. 西北植物学报, 2016, 36(9):1721-1727.
[18] Cai H, Yang S, Yan Y, et al. CaWRKY6 transcriptionally activates CaWRKY40,regulates Ralstonia solanacearum resistance,and confers high-temperature and high-humidity tolerance in pepper. Journal of Experimental Botany, 2015, 66(11):3163-3174.
doi: 10.1093/jxb/erv125
[19] 李可, 熊茜, 肖晓蓉, 等. 木薯25个WRKY家族转录因子在生物胁迫下的表达分析. 热带生物学报, 2017, 8(1):14-21.
[20] Ülker B, Somssich I E. WRKY transcription factors:from DNA binding towards biological function. Current Opinion in Plant Biology, 2004, 7(5):491-498.
doi: 10.1016/j.pbi.2004.07.012
[21] Ross C A, Liu Y, Shen Q J. The WRKY gene family in rice (Oryza sativa). Journal of Integrative Plant Biology, 2007, 49(6):827-842.
doi: 10.1111/j.1744-7909.2007.00504.x
[22] Huang S, Gao Y, Liu J, et al. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Molecular Genetics and Genomics, 2012, 287(6):495-513.
doi: 10.1007/s00438-012-0696-6
[23] Dou L, Zhang X, Pang C, et al. Genome-wide analysis of the WRKY gene family in cotton. Molecular Genetics and Genomics, 2014, 289(6):1103-1121.
doi: 10.1007/s00438-014-0872-y
[24] Semwal R B, Semwal D K, Combrinck S, et al. Gingerols and shogaols:important nutraceutical principles from ginger. Phytochemistry, 2015, 117:554-568.
doi: 10.1016/j.phytochem.2015.07.012
[25] Sun C, Palmqvist S, Olsson H, et al. A novel WRKY transcription factor,SUSIBA2,participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. The Plant Cell, 2003, 15(9):2076-2092.
doi: 10.1105/tpc.014597
[26] 谷彦冰, 冀志蕊, 迟福梅, 等. 苹果WRKY基因家族生物信息学及表达分析. 中国农业科学, 2015, 48(16):3221-3238.
[27] Eulgem T, Somssich I E. Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 2007, 10(4):366-371.
doi: 10.1016/j.pbi.2007.04.020
[28] 向小华, 吴新儒, 晁江涛, 等. 普通烟草WRKY基因家族的鉴定及表达分析. 遗传, 2016, 38(9):840-856.
[29] Ali M A, Azeem F, Nawaz M A, et al. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis. Journal of Plant Physiology, 2018, 226:12-21.
doi: 10.1016/j.jplph.2018.04.007
[30] Li J, Brader G, Kariola T, et al. WRKY70 modulates the selection of signaling pathways in plant defense. The Plant Journal, 2006, 46(3):477-491.
doi: 10.1111/j.1365-313X.2006.02712.x
[31] Chen X, Liu J, Lin G, et al. Overexpression of AtWRKY28 and AtWRKY 75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum. Plant Cell Reports, 2013, 32(10):1589-1599.
doi: 10.1007/s00299-013-1469-3
[32] Scarpeci T E, Zanor M I, Mueller-Roeber B, et al. Overexpression of AtWRKY 30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana. Plant Molecular Biology, 2013, 83(3):265-277.
doi: 10.1007/s11103-013-0090-8 pmid: 23794142
[33] Xu X, Chen C, Fan B, et al. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40,and WRKY 60 transcription factors. The Plant Cell, 2006, 18(5):1310-1326.
doi: 10.1105/tpc.105.037523
[1] Wang Tong, Zhao Xiaodong, Zhen Pingping, Chen Jing, Chen Mingna, Chen Na, Pan Lijuan, Wang Mian, Xu Jing, Yu Shanlin, Chi Xiaoyuan, Zhang Jiancheng. Genome-Wide Identification and Characteristic Analyzation of the TCP Transcription Factors Family in Peanut [J]. Crops, 2021, 37(2): 35-44.
[2] Li Guolong, Wu Haixia, Sun Yaqing. Construction of RNAi Expression Vector of BvWRKY23 Gene in Sugar Beet [J]. Crops, 2020, 36(5): 41-47.
[3] Xu Yuanyuan, Zhao Peng, Hong Quanchun, Zhu Xiaoqin, Pei Dongli. Isolation and Expression Analysis of Transcription Factor Gene TaMYB70 in Wheat [J]. Crops, 2020, 36(4): 84-90.
[4] Duan Junzhi, Qi Xueli, Feng Lili, Zhang Huifang, Sun Yan, Yan Zhaoling, Chen Haiyan, Qi Hongzhi, Fan Wenjie, Yang Cuiping, Liu Yuxia, Ren Yinling, Zhang Jiayuan, Li Ying, Zhuo Wenfei. Progress on Application of Drought Tolerance Genes in Wheat Drought Tolerance Genetic Engineering [J]. Crops, 2020, 36(3): 7-15.
[5] Yang Junkai,Shen Yang,Cai Xiaoxi,Wu Shengyang,Li Jianwei,Sun Mingzhe,Jia Bowei,Sun Xiaoli. Genome-Wide Identification and Expression Patterns Analysis of the PHD Family Protein in Glycine max [J]. Crops, 2019, 35(3): 55-65.
[6] Wu Hao,Li Yanmin,Xie Chuanxiao. Research Advances on Physiological Basis and Gene Discovery for Thermal Tolerance in Crops [J]. Crops, 2018, 34(5): 1-9.
[7] Ying Zhang,Pengyu Liu,Xue Bai,Yang Yang,Yueying Li. Expression and Bioinformatics Analysis of CsWRKY23 Gene in Cucumber [J]. Crops, 2017, 33(5): 38-42.
[8] Xue Zhang,Yuejia Yin,Bei Fan,Huijie Li,Xiaoyu Fei,Xiyan Cui. Advances on the Structural Characteristics and Function of Dof Transcription Factors in Plant [J]. Crops, 2016, 32(2): 14-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!