Crops ›› 2018, Vol. 34 ›› Issue (5): 1-9.doi: 10.16035/j.issn.1001-7283.2018.05.001

    Next Articles

Research Advances on Physiological Basis and Gene Discovery for Thermal Tolerance in Crops

Wu Hao1,2,Li Yanmin1,Xie Chuanxiao1   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
  • Received:2018-04-19 Revised:2018-08-21 Online:2018-10-15 Published:2018-10-12
  • Contact: Chuanxiao Xie

Abstract:

Thermal or heat stress is an environmental limiting factor in crop production which affects the growth and development of crops leading to yields reduction and lower quality of agricultural products. The research on physiology, biochemistry, gene discovery and molecular mechanism of plant heat resistance will lay the foundation for the agricultural production and breeding of the new varieties of heat tolerance. Thermal stress affecting on crops vegetative stage and reproductive stage, the anthesis and grain-filling stage that are critical for yield formation was reviewed in this paper. Four major kinds of the physiological thermal response, namely membrane fluidity change, protein unfolding, cytoskeleton depolymerization and metabolite change were introduced. The gene discovery of Hsf regulation under heat stress was summarized. We also prospected the genetic improvements, creating germplasm, and developing new biotechnology for heat tolerance in crops. This paper provides references for the study of physiological basis, gene discovery, molecular mechanism and breeding pathways for crop heat resistance.

Key words: Crop, Thermal stress, Physiological response, Heat shock transcription factor, Thermotolerance gene, Thermotolerance germplasm

[1] 沈永平, 王国亚 . IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点. 冰川冻土, 2013,35(5):1068-1076.
doi: 10.7522/j.issn.1000-0240.2013.0120
[2] Lobell D B, Schlenker W, Costa-Roberts J . Climate trends and global crop production since 1980. Science, 2011,333(6042):616-620.
doi: 10.1126/science.1204531
[3] Rosegrant M W, Agcaoili-Sombilla M, Perez N D . Food,agriculture and the environment discussion paper 5//Global food projections to 2020:Implications for investment, 1995: 2020-2054.
[4] Baker J T, Lhjr A, Boote K J . Growth and yield responses of rice to carbon dioxide concentration. Journal of Agricultural Science, 1990,115(3):313-320.
doi: 10.1017/S0021859600075729
[5] Asseng S, Ewert F, Rosenzweig C , et al. Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 2013,3(9):827-832.
doi: 10.1038/nclimate1916
[6] Savehenko G E, Klyuchareva E A, Abramchik L M , et al. Effect of periodic heat shock on the inner membrane system of etioplasts. Russian Journal of Plant Physiology, 2002,49(3):349-359.
doi: 10.1023/A:1015592902659
[7] Shanahan J, Edwards I, Quick J , et al. Membrane thermostability and heat tolerance of spring wheat. Crop Science, 1990,30(2):247-251.
doi: 10.2135/cropsci1990.0011183X003000020001x
[8] Martineau J R, Specht J E, Williams J H , et al. Temperature tolerance in soybeans. I. evaluation of a technique for assessing cellular membrane thermostability. Crop Science, 1979(1):75-78.
[9] Blum A, Klueva N, Nguyen H T . Wheat cellular thermotolerance is related to yield under heat stress. Euphytica, 2001,117(2):117-123.
doi: 10.1023/A:1004083305905
[10] Ashraf M, Saeed M M, Qureshi M J . Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environmental & Experimental Botany, 1994,34(3):275-283.
[11] Marcum K B . Cell membrane thermostability and whole-plant heat tolerance of Kentucky bluegrass. Crop Science, 1998,38(5):1214-1218.
doi: 10.2135/cropsci1998.0011183X003800050017x
[12] Ismail A M, Hall A E . Reproductive-stage heat tolerance,leaf membrane thermostability and plant morphology in cowpea. Crop Science, 1999,39(6):1762-1768.
doi: 10.2135/cropsci1999.3961762x
[13] Wahid A, Shabbir A . Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regulation, 2005,46(2):133-141.
doi: 10.1007/s10725-005-8379-5
[14] And G H K, Weis E . Chlorophyll fluorescence and photosynthesis:the basics. Annual Review of Plant Physiology, 1991,42(42):313-349.
doi: 10.1146/annurev.pp.42.060191.001525
[15] Karim M A, Fracheboud Y, Stamp P . Photosynthetic activity of developing leaves of Zea mays is less affected by heat stress than that of developed leaves. Physiologia Plantarum, 1999,105(4):685-693.
doi: 10.1034/j.1399-3054.1999.105413.x
[16] Saadalla M, Shanahan J, Quick J . Heat tolerance in winter wheat: I. Hardening and genetic effects on membrane thermostability. Crop Science, 1990,30(6):1243-1247.
doi: 10.2135/cropsci1990.0011183X003000060017x
[17] Fokar M, Nguyen H T, Blum A . Heat tolerance in spring wheat. I. Estimating cellular thermotolerance and its heritability. Euphytica, 1998,104(1):1-8.
doi: 10.1023/A:1018346901363
[18] Blum A . Plant breeding for stress environments. Plant Breeding for Stress Environments, 1988.
[19] 赵龙飞, 李潮海, 刘天学 . 作物耐热性研究进展. 中国农学通报, 2012,28(9):11-15.
[20] Blum A, Ebercon A . Cell membrane stability as a measure of drought and heat tolerance in wheat1. Crop Science, 1981,21(1):43-47.
doi: 10.2135/cropsci1981.0011183X002100010013x
[21] 郭天财, 周继泽 . 后期高温对冬小麦根系及地上部衰老的影响. 作物学报, 1998,24(6):957-962.
[22] Wise R, Olson A, Schrader S , et al. Electron transport is the functional limitation of photosynthesis in field-grown pima cotton plants at high temperature. Plant, Cell & Environment, 2004,27(6):717-724.
[23] Salvucci M E , Crafts-Brandner S J. Mechanism for deactivation of Rubisco under moderate heat stress. Physiologia Plantarum, 2004,122(4):513-519.
doi: 10.1111/ppl.2004.122.issue-4
[24] 陈思婷 . 拟南芥热激蛋白维持叶绿体类囊体膜稳定性及RNA结合蛋白RBP在植物耐热性中的作用机理研究. 中国科学院大学, 2016.
[25] Zhou R, Yu X, Kjær K H , et al. Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Environmental & Experimental Botany, 2015,118:1-11.
[26] 马晓娣, 彭惠茹, 汪矛 , 等. 作物耐热性的评价. 植物学报, 2004,21(4):411-418.
[27] Šebánek J. Plant Physiology . Elsevier Science, 1992.
[28] Rose M R . Evolutionary genetics and environmental stress. Science, 1991,254(5030):448-450.
[29] Walton D C . Biochemistry and physiology of abscisic acid. Annual Review of Plant Physiology, 1980,31(1):453-489.
doi: 10.1146/annurev.pp.31.060180.002321
[30] Ming G, Li Y J, Chen S Z . Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. Journal of Plant Physiology, 1998,153(4):488-496.
doi: 10.1016/S0176-1617(98)80179-X
[31] 谭常, 俞子文, 杨惠东 , 等. 高温对两种植物组织乙烯产生的作用. 植物生理学报, 1988,14:373-379.
[32] Vettakkorumakankav N N, Falk D, Saxena P , et al. A crucial role for gibberellins in stress protection of plants. Plant and Cell Physiology, 1999,40(5):542-548.
doi: 10.1093/oxfordjournals.pcp.a029575
[33] Banowetz G, Ammar K, Chen D . Temperature effects on cytokinin accumulation and kernel mass in a dwarf wheat. Annals of Botany, 1999,83(3):303-307.
doi: 10.1006/anbo.1998.0823
[34] Dhaubhadel S, Chaudhary S, Dobinson K F , et al. Treatment with 24-epibrassinolide,a brassinosteroid,increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Molecular Biology, 1999,40(2):333-342.
doi: 10.1023/A:1006283015582
[35] Porter J R . Rising temperatures are likely to reduce crop yields. Nature, 2005,436(7048):174.
[36] Saini H, Aspinall D . Abnormal sporogenesis in wheat (Triticum aestivum L.) induced by short periods of high temperature. Annals of Botany, 1982,49(6):835-846.
doi: 10.1093/oxfordjournals.aob.a086310
[37] Dupuis I, Dumas C . Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiology, 1990,94(2):665-670.
doi: 10.1104/pp.94.2.665
[38] Guilioni L, Wery J, Tardieu F . Heat stress-induced abortion of buds and flowers in pea:is sensitivity linked to organ age or to relations between reproductive organs?. Annals of Botany, 1997,80(2):159-168.
doi: 10.1006/anbo.1997.0425
[39] Abiko M, Akibayashi K, Sakata T , et al. High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. Sexual Plant Reproduction, 2005,18(2):91-100.
doi: 10.1007/s00497-005-0004-2
[40] Fischer R . Number of kernels in wheat crops and the influence of solar radiation and temperature. The Journal of Agricultural Science, 1985,105(2):447-461.
doi: 10.1017/S0021859600056495
[41] Prasad P, Boote K, Allen Jr L , et al. Species,ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research, 2006,95(2/3):398-411.
doi: 10.1016/j.fcr.2005.04.008
[42] Tewolde H, Fernandez C, Erickson C . Wheat cultivars adapted to post-heading high temperature stress. Journal of Agronomy and Crop Science, 2006,192(2):111-120.
doi: 10.1111/jac.2006.192.issue-2
[43] Blum A . Improving wheat grain filling under stress by stem reserve mobilisation//Wheat:Prospects for Global Improvement. Springer Netherlands, 1997.
[44] Yang J, Zhang J . Grain filling of cereals under soil drying. New Phytologist, 2006,169(2):223-236.
doi: 10.1111/nph.2006.169.issue-2
[45] Subrahmanyam D, Subash N, Haris A , et al. Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought. Photosynthetica, 2006,44(1):125-129.
doi: 10.1007/s11099-005-0167-y
[46] Plaut Z, Butow B, Blumenthal C , et al. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Research, 2004,86(2/3):185-198.
doi: 10.1016/j.fcr.2003.08.005
[47] Kobata T, Uemuki N . High temperatures during the grain-filling period do not reduce the potential grain dry matter increase of rice. Agronomy Journal, 2004,96(2):406-414.
doi: 10.2134/agronj2004.0406
[48] Setter T L, Flannigan B A . Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. Journal of Experimental Botany, 2001,52(360):1401-1408.
doi: 10.1093/jexbot/52.360.1401
[49] Engelen-Eigles G, Jones R, Phillips R . DNA endoreduplication in maize endosperm cells is reduced by high temperature during the mitotic phase. Crop Science, 2001,41(4):1114-1121.
doi: 10.2135/cropsci2001.4141114x
[50] Triboï E, Martre P , Triboï-Blondel A M. Environmentally-induced changes in protein composition in developing grains of wheat are related to changes in total protein content. Journal of Experimental Botany, 2003,54(388):1731-1742.
doi: 10.1093/jxb/erg183
[51] Altenbach S B, Kothari K M, Lieu D . Environmental conditions during wheat grain development alter temporal regulation of major gluten protein genes. Cereal Chemistry, 2002,79(2):279-285.
doi: 10.1094/CCHEM.2002.79.2.279
[52] Vigh L, Nakamoto H, Landry J , et al. Membrane regulation of the stress response from prokaryotic models to mammalian cells. Annals of the New York Academy of Sciences, 2007,1113(1):40-51.
[53] Örvar B L, Sangwan V, Omann F , et al. Early steps in cold sensing by plant cells:the role of actin cytoskeleton and membrane fluidity. The Plant Journal, 2000,23(6):785-794.
doi: 10.1046/j.1365-313x.2000.00845.x
[54] Sangwan V, Foulds I, Singh J , et al. Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton,and requires Ca 2+ influx . The Plant Journal, 2001,27(1):1-12.
doi: 10.1046/j.1365-313x.2001.01052.x
[55] Vaultier M-N, Cantrel C, Vergnolle C , et al. Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in Arabidopsis cells. FEBS Letters, 2006,580(17):4218-4223.
doi: 10.1016/j.febslet.2006.06.083
[56] Seo P J, Kim M J, Song J S , et al. Proteolytic processing of an Arabidopsis membrane-bound NAC transcription factor is triggered by cold-induced changes in membrane fluidity. Biochemical Journal, 2010,427(3):359-367.
doi: 10.1042/BJ20091762
[57] Pastore A, Martin S R, Politou A , et al. Unbiased cold denaturation: low-and high-temperature unfolding of yeast frataxin under physiological conditions. Journal of the American Chemical Society, 2007,129(17):5374-5375.
doi: 10.1021/ja0714538
[58] von Koskull-Döring P, Scharf K-D, Nover L . The diversity of plant heat stress transcription factors. Trends in Plant Science, 2007,12(10):452-457.
doi: 10.1016/j.tplants.2007.08.014
[59] Yoshida T, Ohama N, Nakajima J , et al. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Molecular Genetics and Genomics, 2011,286(5/6):321-332.
doi: 10.1007/s00438-011-0647-7
[60] Sangwan V, Dhindsa R S . In vivo and in vitro activation of temperature‐responsive plant map kinases. FEBS Letters, 2002,531(3):561-564.
doi: 10.1016/S0014-5793(02)03626-8
[61] Matsuda O, Sakamoto H, Hashimoto T , et al. A temperature-sensitive mechanism that regulates post-translational stability of a plastidial ω-3 fatty acid desaturase (FAD8) in Arabidopsis leaf tissues. The Journal of Biological Chemistry, 2005,280(5):3597-3604.
doi: 10.1074/jbc.M407226200
[62] Malerba M, Crosti P, Cerana R . Effect of heat stress on actin cytoskeleton and endoplasmic reticulum of tobacco BY-2 cultured cells and its inhibition by Co 2+ . Protoplasma, 2010,239(1/4):23-30.
doi: 10.1007/s00709-009-0078-z
[63] Kaplan F, Kopka J, Haskell D W , et al. Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiology, 2004,136(4):4159-4168.
doi: 10.1104/pp.104.052142
[64] Vinocur B, Altman A . Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 2005,16(2):123-132.
doi: 10.1016/j.copbio.2005.02.001
[65] Ruelland E, Zachowski A . How plants sense temperature. Environmental and Experimental Botany, 2010,69(3):225-232.
doi: 10.1016/j.envexpbot.2010.05.011
[66] Suzuki N, Koussevitzky S, Mittler R , et al. ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment, 2012,35(2):259-270.
[67] Miller G, Schlauch K, Tam R , et al. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Science Signaling, 2009, 2(84):ra45.
[68] Queitsch C, Hong S W, Vierling E , et al. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. The Plant Cell, 2000,12(4):479-492.
doi: 10.1105/tpc.12.4.479
[69] Sato H, Mizoi J, Tanaka H , et al. Arabidopsis DPB3-1,a DREB2A interactor,specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. The Plant Cell, 2014,26(12):4954-4973.
doi: 10.1105/tpc.114.132928
[70] Charng Y Y, Liu H C, Liu N Y , et al. A heat-inducible transcription factor,HsfA2,is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology, 2007,143(1):251-262.
[71] Liu J, Sun N, Liu M , et al. An autoregulatory loop controlling Arabidopsis HsfA2 expression: role of heat shock-induced alternative splicing. Plant Physiology, 2013,162(1):512-521.
doi: 10.1104/pp.112.205864
[72] Srivastava R, Deng Y, Howell S H . Stress sensing in plants by an ER stress sensor/transducer,bZIP28. Frontiers in Plant Science, 2014,5:59.
[73] Shinozaki K, Yamaguchi-Shinozaki K . Molecular responses to cold,drought,heat and salt stress in higher plants. Landes Bioscience, 1999: 81-98.
[74] Yang K A, Lim C J, Hong J K , et al. Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage. Plant Science, 2006,171(1):175-182.
doi: 10.1016/j.plantsci.2006.03.013
[75] Iba K . Acclimative response to temperature stress in higher plants:approaches of gene engineering for temperature tolerance. Annual Review of Plant Biology, 2002,53(1):225-245.
doi: 10.1146/annurev.arplant.53.100201.160729
[76] Lui J, Shono M . Characterization of mitochondria-located small heat shock protein from tomato (Lycopersicon esculentum). Plant and Cell Physiology, 1999,40(12):1297-1304.
doi: 10.1093/oxfordjournals.pcp.a029518
[77] Sanmiya K, Suzuki K, Egawa Y , et al. Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Letters, 2004,557(1/2/3):265-268.
doi: 10.1016/S0014-5793(03)01494-7
[78] Richter K, Haslbeck M, Buchner J . The heat shock response:life on the verge of death. Molecular Cell, 2010,40(2):253-266.
doi: 10.1016/j.molcel.2010.10.006
[79] Mittler R, Blumwald E . Genetic engineering for modern agriculture:challenges and perspectives. Annual Review of Plant Biology, 2010,61:443-462.
doi: 10.1146/annurev-arplant-042809-112116
[80] Warren G . Spectacular increases in crop yields in the United States in the twentieth century. Weed Technology, 1998,12(4):752-760.
doi: 10.1017/S0890037X00044663
[81] Ashraf M A , Harris P J C,Ashraf M A,et al. Abiotic stresses:plant resistance through breeding and molecular approaches, 2005: 613-684.
[82] Li X M, Chao D Y, Wu Y , et al. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nature genetics, 2015,47(7):827-833.
doi: 10.1038/ng.3305
[83] Ashraf M A , Harris P J C. Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches. USA,Binghamton:Food Products Press, 2005.
[84] Bohnert H J, Gong Q, Li P, Ma S . Unraveling abiotic stress tolerance mechanisms-getting genomics going. Current Opinion in Plant Biology, 2006,9(2):180-188.
doi: 10.1016/j.pbi.2006.01.003
[85] Maestri E, Klueva N, Perrotta C , et al. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology, 2002,48(5/6):667-681.
doi: 10.1023/A:1014826730024
[86] Liu N Y, Ko S S, Yeh K C , et al. Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Science, 2006,170(5):976-985.
doi: 10.1016/j.plantsci.2006.01.008
[87] Sun A Q, Yi S Y, Yang J Y , et al. Identification and characterization of a heat-inducible ftsH gene from tomato (Lycopersicon esculentum Mill.). Plant Science, 2006,170(3):551-562.
doi: 10.1016/j.plantsci.2005.10.010
[88] Momcilovic I, Ristic Z . Expression of chloroplast protein synthesis elongation factor,EF-Tu,in two lines of maize with contrasting tolerance to heat stress during early stages of plant development. Journal of Plant Physiology, 2007,164(1):90-99.
doi: 10.1016/j.jplph.2006.01.010
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production [J]. Crops, 2018, 34(4): 1-7.
[2] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops [J]. Crops, 2018, 34(4): 13-19.
[3] Wenlian Bai,Yi Zheng,Jingxiu Xiao. Below-Ground Biotic Mechanisms of Phosphorus Uptake and Utilization Improved by Cereal and Legume Intercropping-A Review [J]. Crops, 2018, 34(4): 20-27.
[4] Yong Cui. Influence of Continuous Cropping and Controlling Measures on Continuous Cropping Potato [J]. Crops, 2018, 34(2): 87-92.
[5] Menjun Duan,Yunzi Wu,Yucong Tian,Yongwu Liu,Zhangyong Liu,Fu Chen,Tao Jin. Comparision of Yield and Quality among Different Ratooning Rice Varieties [J]. Crops, 2018, 34(2): 61-67.
[6] Liangmei Chen,Jiangxia Li,Zhaoyun Hu,Wenling Ye,Wenge Wu,Youhua Ma. Review on Application of Low Accumulation Crops on Remediation of Farmland Contaminated by Heavy Metals [J]. Crops, 2018, 34(1): 16-24.
[7] Yue Jiao,Wei Fu,Yong Zhai. Application of RNAi in Crop Breeding and Its Safety Assessment [J]. Crops, 2018, 34(1): 9-15.
[8] Hong Li,Mengjiao Li,Yuchao Wang,Ruijun Wang,Xuli Zhang. Study on the Pattern of Maize/Brassica juncea var. integlifolia Intercropping in Alpine Regions [J]. Crops, 2017, 33(6): 120-125.
[9] Li Song,Wanyou Liao,Yejun Wang,Youjian Su,Yongli Zhang,Yi Luo,Jun Liao,Weiguo Wu. Research Progress in Intercropping Upland Crops with Green Manure [J]. Crops, 2017, 33(6): 7-11.
[10] Jianfu Wu,Zhihong Lu,Dandan Hu. Scientifically Understanding the Role of Organic Fertilizer in Agricultural Production [J]. Crops, 2017, 33(5): 1-6.
[11] Tong Zhou,Wen Chen,Peiliang Qin,Tao Liu,Chengming Sun. Research Progress on Crop Water Intelligent Management [J]. Crops, 2017, 33(5): 7-13.
[12] Yujie Wang,Baoyu Liu,Lei Zhou,Xiping Zhou,Shuangping Liu,Qi Wang,Jun Zhao,Hongyou Zhou. Improving the Control Ability of Anti-Cropping Agent on Sunflower Verticillium wilt [J]. Crops, 2017, 33(4): 155-160.
[13] Huiyan Xiong,Ruijun Duan,Ruisheng Wang. The Physiological and Molecular Mechanisms on Photosynthesis and Phenotype of Winter-Type Crop in Cold Acclimation [J]. Crops, 2017, 33(4): 21-26.
[14] Jingang Liang,Zhengguang Zhang. Advance on Effects of Genetically ModifiedCrops on Soil Ecosystems [J]. Crops, 2017, 33(4): 1-6.
[15] Caixia Liu,Ming Li,Tianqing Du,Fuzhu Cui,Jianfu Xue,Mengni Chen,Jianying Qi. Effects of Different Pre-Production Patterns on Soybean Yield and Soil Moisture in Semiarid Region [J]. Crops, 2017, 33(3): 121-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .