Crops ›› 2022, Vol. 38 ›› Issue (5): 49-55.doi: 10.16035/j.issn.1001-7283.2022.05.007

Previous Articles     Next Articles

Analysis of the Genetic Effects of Leaf Width in Maize

Li Lihua1(), Wei Xin1(), Meng Xin2, Lin Haijian2, Fan Qingqi3, Lu Xiaomin1, Cao Liru1, Zhang Qianjin1, Zhang Xin1, Wang Zhenhua1   

  1. 1Institute of Food Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    3Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan 250100, Shandong, China
  • Received:2021-06-24 Revised:2021-10-18 Online:2022-10-15 Published:2022-10-19

Abstract:

Leaf is the most crucial component of plant photosynthesis, and it can significantly increase maize yield. In order to create two sets of six-generation segregating populations, one three-ear-leaf narrow-leaf inbred line and two three-ear-leaf wide-leaf inbred lines were crossed and backcrossed, respectively (population 1 and population 2). The genetic influence of the leaf width of the three-ear-leaf of maize on the cob was analysed using the main gene and multi-gene multi-generation combination analysis method of the mixed genetic model of plant quantitative traits. The results showed that the inheritance of the leaf width of the two groups of three-ear-leaf was controlled by different gene numbers and belonged to different polygenic genetic models. In population 1, the width of leaf above ear conformed to a pair of additive-dominant major gene+additive-dominant-epistatic polygene model (D-0), and the width of ear-leaf conformed to the two pairs of gene additive-dominant-epistatic model (B-1), the width of leaf under ear conformed to the two-pair gene additive-dominant model (B-2). In population 2, the width of leaf above ear conformed to the two pairs of additive major genes+ additive-dominant polygene model (E-3), and the widths of ear-leaf and under ear conformed to a pair of additive major genes+additive-dominant polygene model (D-2). Therefore, we speculate that maize leaf width was mainly controlled by the main effect genes, and the genetic pattern of the three-ear-leaf of maize was different under different genetic backgrounds. The genetic patterns of ear-leaf, leaf above ear and leaf under ear were all affected on major gene control.

Key words: 玉米, 穗三叶, 叶片宽度, 遗传效应

Table 1

Frequency distribution of leaf widths in six families of R61×W75 combination"

指标
Index
世代
Generation
叶宽Leaf width (cm) 平均数
Mean
变异系数
Coefficient of variation (%)
4~5 5~6 6~7 7~8 8~9 9~10 10~11 11~12 12~13
穗上叶宽
The width of leaf above ear
P1 1 1 3 5 1 9.64 10.02
P2 4 9 4 5.44 12.73
F1 1 2 8 5 10.44 7.28
B1 4 7 35 56 90 43 8 8.81 13.84
B2 3 9 8 6 15 8 1 8.20 19.48
F2 10 19 30 45 62 58 20 4 8.00 19.55
穗位叶宽
The width of ear leaf
P1 4 5 9.72 5.21
P2 11 6 5.76 8.12
F1 7 6 2 9.91 7.61
B1 8 21 58 76 56 13 2 9.11 12.50
B2 1 7 11 10 6 10 4 8.34 19.36
F2 9 19 32 44 45 60 28 4 8.07 20.46
穗下叶宽
The width of leaf under ear
P1 4 4 2 8.90 7.86
P2 5 11 1 6.08 8.55
F1 5 5 6 9.33 9.81
B1 4 15 57 82 62 21 2 9.29 12.00
B2 3 5 13 11 11 4 2 1 8.21 18.71
F2 4 11 35 45 58 56 28 10 1 8.33 18.91

Table 2

Frequency distribution of leaf widths in six families of R61×W45 combination"

指标
Index
世代
Generation
叶宽Leaf width (cm) 平均数
Mean
变异系数
Coefficient of variation (%)
4~5 5~6 6~7 7~8 8~9 9~10 10~11 11~12 12~13
穗上叶宽
The width of leaf above ear
P1 4 9 4 5.44 12.73
P2 2 6 0 1 7.37 10.29
F1 2 7 7 9.75 6.96
B1 20 39 40 31 11 1 7.14 15.89
B2 1 9 34 51 38 6 5 8.31 13.29
F2 5 31 40 41 35 14 2 1 7.95 16.88
穗位叶宽
The width of ear leaf
P1 11 6 5.76 8.12
P2 1 7 1 7.28 5.82
F1 2 6 6 2 9.79 10.01
B1 9 29 47 35 19 2 7.50 14.87
B2 3 27 39 54 12 1 8.59 11.77
F2 1 2 22 42 34 46 19 2 1 8.25 16.45
穗下叶宽
The width of leaf under ear
P1 5 11 1 6.08 8.55
P2 1 7 1 7.37 5.43
F1 2 7 6 3 9.78 9.65
B1 3 33 43 38 22 2 1 7.65 14.20
B2 2 17 56 49 18 2 1 8.77 10.49
F2 1 24 36 48 33 24 2 1 8.27 16.18

Table 3

AIC values estimated by IECM of leaf widthin cross of R61×W75"

穗上叶宽The width of leaf above ear 穗位叶宽The width of ear leaf 穗下叶宽The width of leaf under ear
模型
Model
极大似然数值
Max-likelihood-value
AIC 模型
Model
极大似然数值
Max-likelihood-value
AIC 模型
Model
极大似然数值
Max-likelihood-value
AIC
A-1 -1017.72 2043.44 A-1 -967.41 1942.81 A-1 -984.92 1977.84
A-2 -1054.83 2115.66 A-2 -1001.32 2008.64 A-2 -1003.36 2012.72
A-3 -1019.18 2044.36 A-3 -967.48 1940.95 A-3 -985.22 1976.45
A-4 -1083.32 2172.65 A-4 -1044.64 2095.29 A-4 -1048.38 2102.77
B-1-1 -991.27 2002.55 B-1-1 -940.32 1900.64 B-1-1 -969.71 1959.42
B-1-2 -1012.66 2037.31 B-1-2 -954.87 1921.74 B-1-2 -970.23 1952.46
B-1-3 -1075.27 2158.53 B-1-3 -1043.92 2095.84 B-1-3 -1064.76 2137.52
B-1-4 -1053.29 2112.59 B-1-4 -1003.15 2012.31 B-1-4 -1005.87 2017.74
B-1-5 -1016.94 2041.88 B-1-5 -964.62 1937.23 B-1-5 -979.74 1967.49
B-1-6 -1019.29 2044.57 B-1-6 -965.93 1937.86 B-1-6 -980.03 1966.07
C-0 -999.25 2018.50 C-0 -952.14 1924.29 C-0 -972.65 1965.29
C-1 -1024.98 2063.95 C-1 -972.19 1958.37 C-1 1965.29 1967.72
D-0 -982.92 1989.84 D-0 -941.68 1907.36 D-0 -968.99 1961.99
D-1 -1013.05 2044.09 D-1 -953.45 1924.91 D-1 -968.47 1954.94
D-2 -1013.04 2042.09 D-2 -953.45 1922.91 D-2 -968.47 1952.94
D-3 -1016.16 2048.33 D-3 -958.00 1932.00 D-3 -973.32 1962.64
D-4 -1026.75 2069.50 D-4 -964.63 1945.25 D-4 -973.32 1962.65
E-1-0 -978.77 1993.53 E-1-0 -935.31 1906.61 E-1-0 -966.60 1969.19
E-1-1 -988.45 2006.90 E-1-1 -941.16 1912.32 E-1-1 -967.66 1965.32
E-1-2 -1008.85 2039.70 E-1-2 -957.97 1937.94 E-1-2 -971.00 1964.00
E-1-3 -993.10 2004.20 E-1-3 -943.87 1905.73 E-1-3 -969.48 1956.95
E-1-4 -1024.02 2064.03 E-1-4 -965.46 1946.92 E-1-4 -971.93 1959.86
E-1-5 -1008.90 2035.81 E-1-5 -955.43 1928.85 E-1-5 -973.52 1965.03

Table 4

AIC values estimated by IECM of leaf widthin cross of R61×W45"

穗上叶宽The width of leaf above ear 穗位叶宽The width of ear leaf 穗下叶宽The width of leaf under ear
模型
Model
极大似然数值
Max-likelihood-value
AIC 模型
Model
极大似然数值
Max-likelihood-value
AIC 模型
Model
极大似然数值
Max-likelihood-value
AIC
A-1 -806.90 1621.80 A-1 -777.37 1562.74 A-1 -769.81 1547.63
A-2 -828.29 1662.59 A-2 -801.26 1608.52 A-2 -797.96 1601.93
A-3 -853.43 1712.86 A-3 -824.59 1655.17 A-3 -822.87 1651.74
A-4 1712.86 1623.29 A-4 -785.23 1576.45 A-4 -780.64 1567.29
B-1-1 -782.34 1584.68 B-1-1 -751.97 1523.93 B-1-1 -748.41 1516.83
B-1-2 -784.65 1581.29 B-1-2 -754.06 1520.11 B-1-2 -748.83 1509.67
B-1-3 -850.41 1708.81 B-1-3 -821.15 1650.30 B-1-3 -821.48 1650.96
B-1-4 -825.62 1657.23 B-1-4 -799.57 1605.14 B-1-4 -796.31 1598.62
B-1-5 -851.39 1710.77 B-1-5 -823.08 1654.16 B-1-5 -821.33 1650.66
B-1-6 -851.39 1708.77 B-1-6 -823.08 1652.16 B-1-6 -821.33 1648.66
C-0 -771.25 1562.49 C-0 -744.56 1509.11 C-0 -740.25 1500.50
C-1 -776.50 1567.00 C-1 -747.56 1509.11 C-1 -743.71 1501.42
D-0 -771.24 1566.48 D-0 -743.19 1510.39 D-0 -740.25 1504.49
D-1 -772.61 1563.21 D-1 -744.28 1506.56 D-1 -734.48 1486.95
D-2 -772.61 1561.21 D-2 -744.28 1504.56 D-2 -734.48 1484.95
D-3 -776.07 1568.13 D-3 -746.34 1508.68 D-3 -742.21 1500.42
D-4 -776.30 1568.61 D-4 -746.33 1508.65 D-4 -742.22 1500.43
E-1-0 -766.21 1568.42 E-1-0 -740.75 1517.51 E-1-0 -733.47 1502.94
E-1-1 -768.67 1567.34 E-1-1 -742.80 1515.61 E-1-1 -733.63 1497.27
E-1-2 -773.48 1568.96 E-1-2 -743.41 1508.83 E-1-2 -739.57 1501.14
E-1-3 -771.29 1560.59 E-1-3 -744.60 1507.20 E-1-3 -739.23 1496.47
E-1-4 -776.40 1568.80 E-1-4 -747.51 1511.01 E-1-4 -743.68 1503.35
E-1-5 -776.37 1570.74 E-1-5 -747.51 1513.02 E-1-5 -743.68 1505.36

Table 5

Genetic parameter estimation of leaf width of combination R61×W75"

性状
Trait
模型
Model
一阶参数
1st parameter
估计值
Estimate value
二阶参数
2nd parameter
估计值Estimated value
B1 B2 F2
穗上叶宽
The width of leaf above ear
D-0 m 7.79 σ2p 1.49 2.55 2.45
d 1.28 σ2e 0.58 0.58 0.58
h 1.48 σ2pg 0.89 0.04 0.46
σ2mg 0.02 1.93 1.40
h2pg (%) 59.66 1.70 18.83
h2mg (%) 1.07 75.44 57.31
穗位叶宽
The width of ear leaf
B-1 m 7.40 σ2p 1.30 2.61 2.73
da 1.86 σ2e 0.49 0.49 0.49
db 0.10 σ2pg
ha 0.51 σ2mg 0.81 2.12 2.24
hb 0.40 h2pg (%)
i 0.41 h2mg (%) 62.34 81.27 82.11
jab -0.91
jba -0.20
l 1.66
穗下叶宽
The width of leaf under ear
B-2 m 7.47 σ2p 1.24 2.36 2.48
da 1.43 σ2e 0.57 0.57 0.57
db 0.06 σ2pg
ha 0.55 σ2mg 0.67 1.79 1.91
hb 1.54 h2pg (%)
h2mg (%) 54.17 75.81 77.03

Table 6

Genetic parameter estimation of leaf width of combination R61×W45"

性状
Trait
模型
Model
一阶参数
1st parameter
估计值
Estimate value
二阶参数
2nd parameter
估计值Estimated value
B1 B2 F2
穗上叶宽
The width of leaf above ear
E-3 m 7.80 σ2p 1.29 1.21 1.80
da -0.68 σ2e 0.47 0.47 0.47
db -0.97 σ2pg 0.25 0.35 0.59
ha -0.80 σ2mg 0.57 0.40 0.75
hb 0.08 h2pg (%) 19.51 28.69 32.55
i -0.03 h2mg (%) 44.16 32.83 41.48
jab 0.19
jba -0.02
l 0.66
穗位叶宽
The width of ear leaf
D-2 m 6.48 σ2p 1.24 1.02 1.84
d -1.15 σ2e 0.46 0.46 0.46
[d] 0.29 σ2pg 0.23 0.53 0.54
[h] 3.27 σ2mg 0.56 0.03 0.84
h2pg (%) 18.20 51.99 29.56
h2mg (%) 44.79 2.87 45.45
穗下叶宽
The width of leaf under ear
D-2 m 6.69 σ2p 1.18 0.85 1.79
d -1.37 σ2e 0.47 0.47 0.47
[d] 0.57 σ2pg 0.00 0.36 0.00
[h] 3.07 σ2mg 0.71 0.02 1.33
h2pg (%) 0.00 42.94 0.00
h2mg (%) 60.55 2.06 74.01
[1] Duvick D N. The contribution of breeding to yield advances in maize (Zea mays L). Advances in Agronomy, 2005, 86(5):83-145.
[2] Li Y, Ma X L, Wang T Y, et al. Increasing maize productivity in China by panting hybrids with germplasm that responds favorably to higher planting density. Crop Science, 2011, 51(6):2391-2400.
doi: 10.2135/cropsci2011.03.0148
[3] Wang T Y, Ma X L, Li Y, et al. Changes in yield and yield components of single-cross maize hybrids released in China between 1964 and 2001. Crop Science, 2011, 51(2):512-525.
doi: 10.2135/cropsci2010.06.0383
[4] 唐登国. 玉米叶宽和叶长性状的QTL定位与分析. 成都:四川农业大学, 2013.
[5] 郭书磊, 鲁晓民, 齐建双, 等. 利用 RNA-Seq发掘玉米叶片形态建成相关的调控基因. 中国农业科学, 2020, 53(1):1-17.
[6] 王元东, 段民孝, 邢锦丰, 等. 玉米理想株型育种的研究进展与展望. 玉米科学, 2008, 16(3):47-50.
[7] 张莹莹, 杨青, 代资举, 等. 玉米穗三叶叶宽QTL定位及Meta分析. 河南农业科学, 2019, 48(12):15-22.
[8] 张旷野. 玉米叶夹角和叶宽的遗传分析及QTL定位. 沈阳:沈阳农业大学, 2017.
[9] 赖仲铭, 杨克诚, 雷本鸣, 等. 玉米几个自交系株型数量性状遗传的研究. 中国农业科学, 1981(4):28-36.
[10] 王克胜, 孔繁玲, 杜曼·依马买地. 玉米株型性状的遗传表达和自交系与杂交种的株型的聚类分析. 北京农业大学学报, 1992, 19(3):20-28.
[11] 陈宛秋, 张彪, 康继伟, 等. 几个常用玉米自交系株型性状的遗传及其在株型育种中的利用. 四川农业大学学报, 1993, 11(4):563-567.
[12] 李玉玲, 苏祯禄, 孙书库, 等. 玉米株型性状的配合力及其相关研究. 河南农业大学学报, 1994, 28(4):354-359.
[13] 王雅萍. 玉米自交系株型和产量性状的关系及其利用研究. 玉米科学, 2004, 12(3):47-49.
[14] 霍仕平, 晏庆九, 许明陆, 等. 玉米主要株型数量性状的基因效应分析. 玉米科学, 2001, 9(1):12-15.
[15] 温海霞, 蔡一林, 王久光, 等. 9个玉米自交系主要株型性状的配合力分析. 西南农业大学学报, 2002, 24(3):223-225.
[16] 陈岭, 崔绍平, 徐有, 等. 玉米株型性状的遗传分析. 华北农学报, 1994(增1):11-15.
[17] 盖钧镒, 章元明, 王健康. 植物数量性状遗传体系. 北京: 科学出版社, 2003.
[18] 章元明, 盖钧镒. 数量性状分离分析中分布参数估计的IECM算法. 作物学报, 2000, 26(6):699-706.
[19] 赵可夫. 玉米抽雄后不同叶位叶对籽粒产量的影响及其光合性能. 作物学报, 1981, 7(4):259-266.
[20] 许海涛, 许波, 王友华, 等. 棒三叶对夏玉米光合生理特性、籽粒发育和产量性状的影响. 陕西农业科学, 2018, 64(7):8-12.
[21] 赵小强, 姬祥卓, 彭云玲. 花期玉米(Zea mays)穗三叶叶形结构的遗传效应及配合力分析. 分子植物育种, 2020, 18(9):3024-3031.
[22] Wang B B, Zhu Y B, Zhu J J, et al. Identification and fine- mapping of a major maize leaf width QTL in a resequenced large recombinant inbred lines population. Frontiers in Plant Science, 2018, 9:1-11.
doi: 10.3389/fpls.2018.00001
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia[J]. Crops, 2018, 34(4): 149 -153 .
[2] Huiqin Wen,Tianling Cheng,Ziyou Pei,Xue Li,Lisheng Zhang,Mei Zhu. Analysis of Comprehensive Characteristics of Wheat Varieties Registered in Shanxi Province in Recent Years[J]. Crops, 2018, 34(4): 32 -36 .
[3] Haiyan Liang, Hai Li, Fengxian Lin, Xiangyu Zhang, Zhi Zhang, Xiaoqiang Song. Field Identification of Different Broom Corn Millet Varieties Lodging Resistance and Evaluation Index Selection and Analysis[J]. Crops, 2018, 34(4): 37 -41 .
[4] Zhongguo He,Tongguo Zhu,Yufa Li,Baizhong Wang,Hailong Niu,Hongxin Liu,Weitang Li,Shujing Mu. Current Situation and Development Direction of Peanut Breeding in Jilin[J]. Crops, 2018, 34(4): 8 -12 .
[5] Yanli Fan,Hui Dong,Baishan Lu,Yaxing Shi,Ning Gao,Yamin Shi,Li Xu,Shengli Xi,Cuifen Zhang,Yanhui Liu. Effects of Sowing Date on Starch Gelatinization Characteristics of Different Waxy Maize Varieties[J]. Crops, 2018, 34(4): 79 -83 .
[6] Yan Zhang,Cui Yin,Yun’e Cao. Effects of Earthworm Fermentation Broth on Fruit and Vegetables Quality[J]. Crops, 2018, 34(1): 102 -106 .
[7] Shaohui Huang,Yunma Yang,Ketong Liu,Junfang Yang,Suli Xing,Yanming Sun,Liangliang Jia. Effects of Different Fertilization Method on Wheat Yield and Fertilizer Contribution Rate in Hebei Province[J]. Crops, 2018, 34(1): 113 -117 .
[8] Zhimin Du,Yuchen Yang,Yuanye Xia,Yanlong Gong,Zhiqiang Yan,Hai Xu. Effects of Harvest Time on Quality Traits of Hybrid Japonica Rice and Inbred Japonica Rice in Northern China[J]. Crops, 2018, 34(1): 147 -151 .
[9] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines)[J]. Crops, 2018, 34(1): 77 -82 .
[10] Kai Zhu,Fei Zhang,Fulai Ke,Yanqiu Wang,Jianqiu Zou. Effects of Planting Density on Yield and Physiological Characteristics of Sorghum Hybrids Suitable for Mechenization[J]. Crops, 2018, 34(1): 83 -87 .