Crops ›› 2022, Vol. 38 ›› Issue (5): 42-48.doi: 10.16035/j.issn.1001-7283.2022.05.006

Previous Articles     Next Articles

Comprehensive Evaluation of Agronomic and Quality Traits of 16 New Oil Flax Lines

Hou Jingjing1(), Jin Fang2(), Zhao Li1(), Wang Bin1   

  1. 1Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    2National Agricultural Technology Extension Service Center, Beijing 100125, China
  • Received:2022-01-17 Revised:2022-06-09 Online:2022-10-15 Published:2022-10-19

Abstract:

In order to screen new oil flax (Linum usitatissimum L.) varieties and improve the breeding efficiency, the agronomic and quality traits of 16 new oil flax lines were measured and analyzed, and correlation analysis and comprehensive evaluation by DTOPSIS method were carried out with Zhangya 2 and Longya 13 as controls for two consecutive years. The results showed that among agronomic traits, the variation coefficient of plant height was the smallest and that of stem number was the largest. Among the quality traits, the variation coefficient of linoleic acid was the smallest and that of stearic acid was the largest. Correlation analysis showed that the capsule number per plant and the seeds weight per plant were extremely significantly positively correlated. The yield was significantly positively correlated with the capsule number per plant, the seeds weight per plant and plant height. Linolenic acid was significantly negatively correlated with stearic acid, palmitic acid and oleic acid. Crude fat was significantly positively correlated with stem number and the seeds weight per plant, and extremely significantly negatively correlated with stem length. DTOPSIS comprehensive evaluation and analysis showed that the Ci values of six new lines were greater than that of two control varieties, and line R104 was better than Zhangya 2 and lower than Longya 13; the comprehensive traits of the other nine lines were lower than two control varieties. We screened out the lines R161, R99, R46, R96, R104-1 and R41 with excellent comprehensive traits, high yield and good quality, which are suitable for planting in Northwest China.

Key words: Oil flax, New lines, Traits, DTOPSIS method, Comprehensive evaluation

Table 1

The difference of agronomic traits of new oil flax lines"

农艺性状
Agronomic trait
年份
Year
平均数
Mean
标准差
Standard deviation
最大值
Maximum
最小值
Minimum
极差
Range
变异系数
Coefficient of variation (%)
株高Plant height (cm) 2019 60.68 6.66 73.86 48.93 24.93 10.98
2020 57.39 7.78 74.50 44.73 29.77 13.56
工艺长度Stem length (cm) 2019 30.46 5.99 41.53 19.17 22.36 19.68
2020 39.03 14.19 58.77 17.90 40.87 36.37
分茎数Stem number 2019 0.88 0.57 1.72 0.00 1.72 64.65
2020 0.91 0.57 2.13 0.13 2.00 62.69
分枝数Branch number 2019 5.21 1.55 8.13 2.49 5.64 29.72
2020 3.64 0.57 4.73 2.53 2.20 15.54
单株果数Capsule number per plant 2019 45.97 9.70 64.13 27.73 36.40 21.11
2020 27.81 9.31 44.07 13.07 31.00 33.47
单株粒重Seeds weight per plant (g) 2019 1.95 0.59 2.87 0.71 2.16 30.12
2020 1.45 0.55 2.61 0.63 1.98 37.91
千粒重1000-seed weight (g) 2019 5.94 1.02 8.60 5.05 3.55 17.14
2020 5.89 1.05 7.87 4.60 3.27 17.88
产量Yield (kg/hm2) 2019 1885.62 182.34 2172.84 1610.90 561.94 9.67
2020 1616.30 248.83 2082.92 1288.71 794.21 15.39

Table 2

The difference of quality traits of new oil flax lines"

品质性状
Quality trait
年份
Year
平均数
Mean
标准差
Standard deviation
最大值
Maximum
最小值
Minimum
极差
Range
变异系数
Coefficient of variation (%)
粗脂肪Crude fat (%) 2019 39.79 1.59 43.42 37.48 5.94 4.00
2020 39.42 1.73 43.29 37.01 6.28 4.39
木酚素Lignans (mg/g) 2019 7.20 1.29 9.99 5.09 4.90 17.99
2020 7.38 1.17 9.97 5.77 4.20 15.80
亚麻酸Linolenic acid (%) 2019 52.10 4.19 59.59 40.61 18.98 8.04
2020 51.37 3.02 55.24 45.27 9.97 5.87
亚油酸Linoleic acid (%) 2019 14.08 0.53 14.93 13.14 1.79 3.74
2020 14.01 0.53 14.65 12.85 1.80 3.82
硬脂酸Stearic acid (%) 2019 3.92 0.77 5.83 2.97 2.86 19.75
2020 4.00 1.18 6.12 2.36 3.76 29.46
油酸Oleic acid (%) 2019 23.93 3.44 32.58 16.50 16.08 14.38
2020 24.39 2.06 28.06 20.59 7.47 8.43
棕榈酸Palmitic acid (%) 2019 5.87 0.26 6.41 5.34 1.07 4.46
2020 6.13 0.29 6.69 5.62 1.07 4.72

Fig.1

Correlation analysis of agronomic traits “*”means P < 0.05,“**”means P < 0.01, the same below"

Fig.2

Correlation analysis of quality traits"

Table 3

Correlation of agronomic traits and quality traits of different oil flax lines"

品质性状
Quality trait
株高
Plant
height
工艺长度
Stem
length
分茎数
Stem
number
分枝数
Branch
number
单株果数
Capsule number
per plant
单株粒重
Seeds weight
per plant
千粒重
1000-seed
weight
产量
Yield
粗脂肪Crude fat 0.284 -0.445** 0.535** -0.236 0.239 0.379* 0.159 0.313
木酚素Lignans 0.519** -0.384* 0.424* -0.409* 0.110 -0.001 -0.193 0.313
亚麻酸Linolenic acid -0.034 0.160 0.162 -0.019 0.087 0.174 0.101 -0.137
亚油酸Linoleic acid -0.023 0.222 -0.044 -0.088 0.013 -0.211 -0.101 0.003
硬脂酸Stearic acid 0.417* -0.614** 0.377* -0.133 0.198 0.383* 0.195 0.339*
油酸Oleic acid -0.176 0.108 -0.443** 0.155 -0.196 -0.365* -0.174 -0.032
棕榈酸Palmitic acid 0.037 -0.126 0.041 -0.054 -0.094 -0.001 -0.076 -0.281

Table 4

Comprehensive traits of new oil flax lines"

性状
Trait
R25 R41 R46 R88 R96 R99 R103 R104 R104-1 R148 R148-1 R158 R161 R172 R173 R182 张亚2号
Zhangya 2
陇亚13号
Longya 13
株高
Plant height (cm)
57.75 54.15 57.22 52.59 63.33 63.81 56.74 60.13 55.65 52.53 53.22 59.80 67.44 74.18 55.52 60.47 61.83 56.27
工艺长度
Stem length (cm)
39.75 36.85 40.87 38.17 20.06 20.62 42.42 47.05 42.40 36.97 38.32 43.12 19.45 24.68 41.67 41.50 27.65 23.82
分茎数
Stem number
1.08 0.83 0.67 0.35 1.75 1.68 0.54 0.79 1.27 0.42 0.32 0.37 1.36 1.38 0.79 0.85 1.22 0.50
分枝数
Branch number
4.57 5.72 4.12 4.13 3.20 3.61 6.03 4.43 4.33 4.97 4.34 4.45 2.51 3.85 5.15 5.82 4.19 4.22
单株果数
Capsule number
per plant
40.27 39.97 35.77 25.87 44.08 45.01 36.50 33.02 35.92 34.92 31.65 28.89 33.28 44.95 40.75 44.70 37.50 30.93
单株粒重
Seeds weight
per plant (g)
1.78 1.92 1.97 1.05 2.07 2.22 1.68 1.45 1.35 1.53 1.32 1.10 1.68 1.68 1.85 1.65 2.59 1.65
千粒重
1000-seed
weight (g)
5.40 6.00 7.94 5.37 5.17 5.58 6.27 6.27 7.04 5.40 5.10 5.24 5.52 5.07 5.37 5.24 8.12 6.45
产量
Yield (kg/hm2)
1472.28 1888.12 1899.36 1655.85 1884.37 1854.40 1520.98 1809.44 1899.36 1562.19 1554.70 1779.48 2116.64 1723.28 1569.68 1652.10 1723.28 1951.80
粗脂肪
Crude fat (%)
37.25 39.33 39.64 38.40 43.35 43.29 39.62 39.95 40.14 38.72 38.54 38.89 38.77 39.85 39.67 37.54 40.84 39.14
木酚素
Lignans (mg/g)
5.96 6.13 7.68 7.78 7.80 9.34 6.16 7.77 7.86 6.69 6.84 6.93 8.29 9.98 6.15 7.11 5.48 7.27
亚麻酸
Linolenic acid (%)
55.01 47.35 51.79 52.24 51.03 56.39 54.36 52.56 52.50 52.57 53.34 48.62 52.86 46.44 53.11 53.03 54.78 43.29
亚油酸
Linoleic acid (%)
13.74 13.24 14.48 14.32 14.18 14.54 13.96 14.73 14.73 14.17 14.06 14.45 13.54 14.06 14.56 13.52 13.00 13.62
硬脂酸
Stearic acid (%)
3.01 4.54 3.65 2.72 4.87 5.10 3.67 3.53 3.47 3.46 2.77 3.88 3.80 5.22 2.88 3.64 5.12 5.98
油酸
Oleic acid (%)
23.52 26.70 24.04 25.31 21.88 18.55 22.18 23.71 23.62 25.00 24.67 27.25 23.23 26.90 23.03 24.53 20.75 29.98
棕榈酸
Palmitic acid (%)
6.03 6.45 5.98 6.18 6.13 5.96 6.13 5.67 5.69 5.71 5.90 5.80 5.76 6.34 5.93 6.00 6.12 6.25

Table 5

Comprehensive evaluation results by DTOPSIS method"

品系(种)
Line (variety)
Si+ Si- Si++Si- Ci Ci排序
Ci rank
R25 0.1036 0.0367 0.1403 0.2617 17
R41 0.0519 0.0709 0.1227 0.5775 6
R46 0.0463 0.0724 0.1188 0.6100 3
R88 0.0846 0.0379 0.1225 0.3094 15
R96 0.0491 0.0765 0.1256 0.6089 4
R99 0.0469 0.0791 0.1260 0.6274 2
R103 0.0923 0.0446 0.1369 0.3259 14
R104 0.0590 0.0588 0.1178 0.4993 8
R104-1 0.0493 0.0706 0.1199 0.5886 5
R148 0.0902 0.0361 0.1263 0.2856 16
R148-1 0.0937 0.0318 0.1255 0.2533 18
R158 0.0713 0.0498 0.1210 0.4112 11
R161 0.0501 0.0959 0.1460 0.6569 1
R172 0.0707 0.0525 0.1233 0.4262 10
R173 0.0864 0.0428 0.1292 0.3312 13
R182 0.0799 0.0496 0.1295 0.3828 12
张亚2号Zhangya 2 0.0649 0.0618 0.1267 0.4877 9
陇亚13号Longya 13 0.0543 0.0730 0.1273 0.5732 7
[1] 党占海, 赵玮, 张建平, 等. 中国现代农业产业可持续发展战略研究:胡麻分册. 北京: 中国农业出版社, 2016.
[2] 孟桂元, 涂洲溢, 詹兴国, 等. 我国植物油料油脂生产、消费需求分析及发展对策. 中国油脂, 2020, 45(10):1-4,27.
[3] 张辉, 贾霄云, 高凤云, 等. 胡麻. 北京: 中国农业科学技术出版社, 2021.
[4] 王维义, 许帅强, 何宏燕, 等. 亚麻籽的营养成分及功能研究进展. 中国油脂, 2020, 45(4):83-85.
[5] Qiu C S, Wang H, Guo Y, et al. Comparison of fatty acid composition,phytochemical profile and antioxidant activity in four flax (Linum usitatissimum L.) varieties. Oil Crop Science, 2020, 5(3):136-141.
doi: 10.1016/j.ocsci.2020.08.001
[6] 张耀文, 李殿荣, 侯君利, 等. 油菜种子中亚麻酸研究现状及改良思路. 作物杂志, 2020(4):21-29.
[7] Gao Y H. Oilseed flax (Linum usitatissimum L.) an emerging functional cash crop of China. Oil Crop Science, 2020, 5(2):23.
doi: 10.1016/j.ocsci.2020.04.002
[8] 邵文捷. 亚麻籽——二十一世纪新型功能性食品. 食品工业, 2012, 33(12):145-147.
[9] 史湘铃, 孙桂菊. 亚麻籽调节糖脂代谢作用的研究进展. 食品科学, 2020, 41(13):242-248.
[10] 李文砚, 韦优, 孔方南, 等. DTOPSIS法在草莓品种综合评价中的应用研究. 植物生理学报, 2018, 54(5):925-930.
[11] 何文, 张秀芬, 郭素云, 等. DTOPSIS法在甘薯品系综合评价中的应用研究. 农业研究与应用, 2021, 34(1):27-32.
[12] 张春艳, 吴荣华, 庄克章, 等. 基于熵值赋权的DTOPSIS法对不同玉米品种在鲁南地区的综合评价研究. 中国农学通报, 2021, 37(23):8-14.
[13] 蒋聪, 刘慰华, 杨旭昆, 等. 灰色关联度分析和DTOPSIS法在云南粳稻品种综合评价中的应用. 西南农业学报, 2020, 33(5):907-912.
[14] 侯珺, 任伟. 15个夏芝麻新品种综合评价. 广东蚕业, 2020, 54(5):9-11.
[15] 闫向前, 马文娅, 何鑫. 夏大豆品种区域试验4种分析方法的比较研究. 安徽农业科学, 2019, 47(16):43-45.
[16] 郭强, 马文清, 秦昌鲜, 等. 甘蔗新品系的DTOPSIS法综合评价. 作物杂志, 2021(4):32-37.
[17] 杜刚, 刘其宁, 吴学英. DTOPSIS法和灰色关联度法在亚麻新品种综合评价中的应用比较. 西南农业学报, 2009, 22(6):1526-1531.
[18] 王玉富, 粟建光. 亚麻种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006:24-26.
[19] 王利琴, 杨建春, 张永福. 16个胡麻品种生产性能的综合评价. 山西农业科学, 2020, 48(10):1588-1592.
[20] 叶小倩, 马丁丑. 甘肃省油料作物比较优势分析. 物流科技, 2020, 43(12):106-110.
[21] 陈英. 胡麻种质资源数量性状的多元统计分析. 中国油料作物学报, 2016, 38(6):730-736.
[22] 张炜, 曹秀霞, 杨崇庆, 等. 旱地胡麻主要农艺性状综合评价. 宁夏农林科技, 2017, 58(3):7-9.
[23] 伊六喜, 高凤云, 周宇, 等. 胡麻种质资源表型性状的鉴定与分析. 中国油料作物学报, 2020, 42(3):411-419.
[24] 王斌, 赵利, 王利民, 等. 胡麻种质资源主要品质性状的分析与评价. 中国油料作物学报, 2018, 40(6):785-792.
[25] 左振兴, 纪军建, 付国庆, 等. 基于DUS测试性状的亚麻测试品种遗传多样性分析. 中国农学通报, 2021, 37(24):48-53.
[26] 焦振飞, 吴瑞香, 邢宝龙, 等. 晋北区胡麻品种(系)产量构成因素相关性分析. 山西农业科学, 2021, 49(7):849-854.
[27] 赵利, 赵玮, 李闻娟, 等. 不同环境下胡麻脂肪酸含量的遗传分析. 干旱地区农业研究, 2018, 36(6):48-55.
[28] 陈明哲, 高凤云, 斯钦巴特尔, 等. 亚麻种质脂肪酸含量的鉴定与评价. 中国麻业科学, 2021, 43(3):138-142.
[29] 热不海提·帕力哈提, 张正, 彭定祥, 等. 35份亚麻品种(系)在武汉市的适应性评价. 湖北农业科学, 2020, 59(11):14-18.
[30] 欧巧明, 叶春雷, 李进京, 等. 油用亚麻品种资源主要性状的鉴定与评价. 中国油料作物学报, 2017, 39(5):623-633.
[31] 张丽丽, 刘晶晶, 乔海明, 等. 从俄罗斯引进亚麻种质资源的农艺性状评价. 中国油料作物学报, 2017, 39(5):698-703.
[32] 王丽艳, 孙强, 王鑫淼, 等. 不同亚麻籽品种氨基酸含量测定及品质综合评价. 食品与机械, 2021, 37(9):53-59,72.
[33] 郭英杰, 郭娜, 李爱荣, 等. 国内油用亚麻新品种(系)在冀北坝上的适应性评价. 农学学报, 2020, 10(6):60-65.
[1] Feng Yu, Xing Baolong. Research on the Growth Characteristics and Forage Quality of Different Cowpea Varieties in Cold Region [J]. Crops, 2022, 38(6): 220-225.
[2] Guo Huanle, Tang Bin, Li Han, Cao Zhongyang, Zeng Qiang, Liu Liangwu, Chen Zhihui. Comprehensive Evaluation of Phenotypic Traits and Classification of Maize Landraces in Hunan Province [J]. Crops, 2022, 38(6): 33-41.
[3] Li Wangsheng, Wang Xueqian, Yin Xilong, Shi Yang, Liu Dali, Tan Wenbo, Xing Wang. Comprehensive Evaluation of Drought Tolerance of Sugar Beet Germplasms at Seedling Stage [J]. Crops, 2022, 38(6): 54-60.
[4] Shi Guanyan, Wang Juanfei, Ma Huifang, Zhao Xiongwei. Correlation and Regression Analysis between Yield and Main Agronomic Traits in Foxtail Millet Hybrids [J]. Crops, 2022, 38(6): 82-87.
[5] Lü Jianzhen, Ren Ying, Wang Hongyong, Zhang Tingjun, Ma Jianping, Zhao Kai. Comprehensive Phenotype Evaluation of 264 Major Foxtail Millet Bred Varieties (Lines) [J]. Crops, 2022, 38(4): 22-31.
[6] Wang Xiaochun, Zhu Dexin, Yang Tianhui, Wang Chuan, Yang Weidi, Gao Ting, Liang Xiaojun. Correlation Analysis of Main Agronomic Characteristics of Different Alfalfa Varieties and Comparison of Hay Yield in Yellow River Irrigation Area of Ningxia [J]. Crops, 2022, 38(4): 32-36.
[7] Zhang Chunyan, Zhuang Kezhang, Wu Ronghua, Li Jing, Li Xinxin, Wang Heng, Dong Xichen, Xu Geng, Wu Benhua. Comprehensive Evaluation of 11 Feed Oat Varieties in Southern Shandong by DTOPSIS Method Based on Entropy Weighting [J]. Crops, 2022, 38(4): 62-68.
[8] Xu Shiying, Wang Ning, Cheng Hao, Feng Wanjun. Dynamic Changes of Seedling Traits among Maize Hybrids and Their Parents in Response to Low Nitrogen Stress [J]. Crops, 2022, 38(4): 90-98.
[9] Zhao Lirong, Ma Ke, Zhang Liguang, Tang Sha, Yuan Xiangyang, Diao Xianmin. Analysis of Agronomic Traits and Quality of Foxtail Millet Varieties in Different Ecological Regions [J]. Crops, 2022, 38(2): 44-53.
[10] Li Zhongnan, Wang Yueren, Che Limei, Wu Shenghui, Qu Haitao, Song Tao, Li Fulin, Li Guangfa. Comparative Analysis and Research of Four Ear Traits of Six Generations and DH Generation of Tongyu 179 [J]. Crops, 2022, 38(2): 64-68.
[11] Feng Sufen, Liu Yuanjian, Xu Ruiqi, Zhang Wei. Analysis on Main Traits of Fresh Corn Varieties Recently Approved in Yunnan Province [J]. Crops, 2022, 38(1): 220-226.
[12] Song Quanhao, Jin Yan, Song Jiajing, Bai Dong, Zhao Lishang, Chen Jie, Zhu Tongquan. Evaluation the Breeding Utilizability of Synthetic Hexaploid Wheat in Huang-Huai Area [J]. Crops, 2022, 38(1): 56-64.
[13] Gao Zhanning, Wang Shujie, Feng Hui, Xue Zhenggang, Yang Yongqian, Song Xiaopeng, Jie Yuanfen. Comprehensive Evaluation of Two-Rowed Barley Varieties (Lines) [J]. Crops, 2022, 38(1): 70-76.
[14] Gu Yuchao, Yang Yide, Yan Min, Liu Yong, Yang Jian, Xiang Jinyou, Luo Zhushi, Li Linqiu, Jing Yanqiu, Yang Yang. Effects of GA3 and 6-BA on Agronomic Traits and Chemical Components of Flue Cured Tobacco after Topping [J]. Crops, 2021, 37(6): 171-176.
[15] An Jianghong, Zhang Wenjing, Yang Xiaohong, Nan Jinsheng, Yang Yan, Yan Mingxia, Han Bing. Comparison of Two Methods for Kernel Hardness Determination of Naked Oats [J]. Crops, 2021, 37(6): 28-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[2] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[3] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[4] Ying Chai,Yongqing Xu,Yao Fu,Xiuyu Li,Fumeng He,Yingqi Han,Zhe Feng,Fenglan Li. Characteristics of Cell Wall Degradation Enzyme Produced by Main Pathogenic Fusarium spp. in Potato Dry Rot[J]. Crops, 2018, 34(4): 154 -160 .
[5] Fei Yang,Wenli Ma,Yongwei Chen,Zhansheng Zhang,Hao Wang. The Effects of Uniform Sowing and Drip Irrigation on the Spike Differentiation and Yield of Spring Wheat[J]. Crops, 2018, 34(4): 84 -88 .
[6] Yajun Liu,Qiguo Hu,Fengli Chu,Wenjing Wang,Aimei Yang. Effects of Different Cultivation Methods and Planting Densities on the Yield and Storage Root Tuberization of Sweet Potato cv. "Shangshu 9"[J]. Crops, 2018, 34(4): 89 -94 .
[7] Zhengui Yuan,Pingping Chen,Lili Guo,Naimei Tu,Zhenxie Yi. Varietal Difference in Yield and Cd Accumulation and Distribution in Panicle of Rice Affected by Soil Cd Content[J]. Crops, 2018, 34(1): 107 -112 .
[8] Liangmei Chen,Jiangxia Li,Zhaoyun Hu,Wenling Ye,Wenge Wu,Youhua Ma. Review on Application of Low Accumulation Crops on Remediation of Farmland Contaminated by Heavy Metals[J]. Crops, 2018, 34(1): 16 -24 .
[9] Lu Zhao,Zhiwei Yang,Liqun Bu,Ling Tian,Mei Su,Lei Tian,Yinxia Zhang,Shuqin Yang,Peifu Li. Analysis and Comprehensive Evalution of Phenotypic Genetic Diversity of Ningxia and Xinjiang Rice Germplasm[J]. Crops, 2018, 34(1): 25 -34 .
[10] Shanshan Lu,Chenglai Wu,Yan Li,Chunqing Zhang. The Molecular Basis of Holding the Feature and Genetic Purity for Maize Inbred Lines[J]. Crops, 2018, 34(1): 41 -48 .