Crops ›› 2023, Vol. 39 ›› Issue (3): 188-194.doi: 10.16035/j.issn.1001-7283.2023.03.026

Previous Articles     Next Articles

Effects of Salicylic Acid Application on the Growth and Physiological Characteristics of Cotton Seedlings under Salt Stress

Xu Xuewen1,2(), Wang Xingpeng1,2,3, Wang Hongbo1,2, Li Guohui1,2, Tang Maosong1,2, Cao Zhenxi1,2()   

  1. 1College of Water Resources and Construction Engineering, Tarim University, Alar 843300, Xinjiang, China
    2Key Laboratory of Modern Agricultural Engineering, Tarim University, Alar 843300, Xinjiang, China
    3Key Laboratory of Water-Saving Agriculture in Northwest Oasis, Ministry of Agriculture and Rural Affairs, Shihezi 832000, Xinjiang, China
  • Received:2023-02-16 Revised:2023-03-04 Online:2023-06-15 Published:2023-06-16

Abstract:

To investigate the regulatory effects of salicylic acid (SA) on the growth and physiology of cotton seedlings under salt stress, two salt concentrations of 3 (low salt, T1) and 6g/L (high salt, T2) and four SA concentrations of 0.00 (S0), 0.01 (low concentration, S1), 0.05 (medium concentration, S2) and 0.10mmol/L (high concentration, S3) were set, and no SA, no NaCl was as the control (CK), and the effects of SA on root dry matter mass, root morphology, antioxidant enzymes and osmoregulatory substances of cotton seedlings under salt stress were investigated based on a comprehensive evaluation method of principal components. The effects of SA on root dry matter, root morphology, antioxidant enzymes and osmoregulatory substances of cotton seedlings under salt stress were investigated based on a comprehensive evaluation method. Principal component analysis showed that cotton seedling root surface area, underground dry matter, root volume and catalase (CAT) activity were the most responsive to salt stress and SA regulation, and showed a trend of increasing and then decreasing with increasing SA concentration at the same salt concentration, with T1S2 treatment increasing 66%, 75%, 119% and 26% compared to T1S0, respectively; T2S2 treatment increasing 47%, 61%, 49% and 12% compared to T2S0, respectively. With increasing salt concentration, root surface area, underground dry matter, and root volume showed a significant decrease, compared with T1S0, T2S0 treatment decreasing 33%, 25% and 22%, respectively, while CAT activity showed a significant increase with the increasing of salt concentration, T2S0 treatment increasing 32% compared with T1S0 treatment. The comprehensive evaluation showed that the medium concentration of SA (0.05mmol/L) alleviated the damage of low salt stress on cotton seedlings, and the alleviating effect of SA decreased with the increasing of salt concentration. The results could provide a more suitable exogenous application strategy for salt-tolerant and stress-resistant planting of cotton.

Key words: Salt stress, Salicylic acid, Root morphological indexes, Antioxidant enzymes, Osmotic regulating substance, Comprehensive evaluation

Fig.1

Cotton seedling growth device"

Table 1

Effects of SA on root index, bioaccumulation and root-shoot ratio of cotton seedlings under salt stress"

处理
Treatment
根总长度
Total length
of root (cm)
根表面积
Surface area
of root (cm2)
根体积
Volume of
root (cm3)
地下部干物质
Underground
dry matter (mg)
地上部干物质
Above-ground
dry matter (mg)
根冠比
Root-shoot
ratio (%)
CK 43.43±3.73a 30.47±1.82a 2.00±0.18a 34.37±0.87a 163.40±5.82a 21.04±0.32a
T1S1 31.24±1.96c 17.55±0.99c 1.04±0.14b 18.50±1.15cd 112.67±8.39de 16.52±2.04bc
T1S2 41.88±0.89a 28.69±0.74a 1.88±0.09a 33.87±1.50a 163.10±8.43a 20.78±0.85a
T1S3 36.28±3.78b 20.69±2.30b 1.02±0.12b 22.00±3.03b 132.67±9.36b 16.55±1.47bc
T1S0 30.13±2.02c 17.28±1.08c 0.86±0.06bc 19.40±0.98c 130.10±7.18bc 14.91±0.08c
T2S1 20.06±1.58d 13.78±2.29d 0.78±0.08c 16.90±1.14cde 103.30±1.21e 16.36±1.12bc
T2S2 28.59±3.33c 17.06±2.55c 1.00±0.12b 23.33±0.59b 133.03±3.18b 17.54±0.18b
T2S3 19.86±2.27d 10.18±1.65e 0.50±0.05d 16.27±1.11de 125.50±5.01bc 12.96±0.79d
T2S0 18.02±1.23d 11.58±0.62de 0.67±0.04cd 14.53±1.12e 119.73±5.71cd 12.14±0.82d
T ** ** ** ** ** **
S ** ** ** ** ** **
T×S ns ** ** ** * *

Fig.2

Effects of SA on primary root length of cotton seedlings under different salt concentrations"

Fig.3

Antioxidant enzyme activities, MDA content and osmoregulatory substance content of cotton seedling roots under SA treatment under salt stress The different lowercase letters indicate significant difference at P < 0.05 level"

Table 2

Principal component eigenvalues, contribution rates and cumulative contribution rates"

主成分
Principal
component
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 特征值
Eigenvalue
贡献率
Contribution
rate (%)
累积贡献率
Cumulative
contribution rate (%)
PC1 0.97 0.98 0.81 0.93 0.93 0.98 0.98 0.36 -0.03 0.24 -0.84 0.03 0.02 7.11 54.68 54.68
PC2 -0.14 0.11 0.05 0.13 -0.29 -0.15 0.02 0.90 0.98 0.84 0.31 0.97 0.97 4.60 35.42 90.10

Table 3

Principal component score coefficients"

主成分Principal component X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
PC1 0.33 0.34 0.28 0.32 0.32 0.34 0.34 0.12 -0.01 0.08 -0.29 0.01 0.01
PC2 -0.08 0.06 0.02 0.07 -0.15 -0.08 0.01 0.48 0.52 0.45 0.16 0.51 0.52

Table 4

Composite score of principal component analysis"

项目Item T1S1 T1S2 T1S3 CK1 T2S1 T2S2 T2S3 CK2
Y1 -0.48 3.59 0.27 -0.76 -1.68 0.30 -2.42 -2.41
Y2 -0.58 0.98 -1.45 -2.24 1.14 4.40 0.75 1.49
Y -0.47 2.32 -0.36 -1.20 -0.52 1.71 -1.07 -0.81
[1] 白岩, 毛树春, 田立文, 等. 新疆棉花高产简化栽培技术评述与展望. 中国农业科学, 2017, 50(1):38-50.
doi: 10.3864/j.issn.0578-1752.2017.01.004
[2] 国家统计局关于2021年棉花产量的公告. 中国信息报, 2021-2-14(2).
[3] 田长彦, 买文选, 赵振勇. 新疆干旱区盐碱地生态治理关键技术研究. 生态学报, 2016, 36(22):7064-7068.
[4] 陈镭, 侯东升, 郭玲玲, 等. 新疆盐碱地形成特点及改良措施. 新疆农垦科技, 2009, 32(5):56-57.
[5] 王春霞, 王全九, 刘建军, 等. 灌水矿化度及土壤含盐量对南疆棉花出苗率的影响. 农业工程学报, 2010, 26(9):28-33.
[6] 王海江, 王开勇, 刘玉国, 等. 膜下滴灌棉田不同土层盐分变化及其对棉花生长的影响. 生态环境学报, 2010, 19(10):2381-2385.
doi: 10.16258/j.cnki.1674-5906(2010)10-2381-05
[7] 逯亚玲, 王灵婧, 王宁, 等. 外源水杨酸对NaCl胁迫下紫花苜蓿幼苗生长和生理特性的影响. 草地学报, 2017, 25(6):1265-1273.
doi: 10.11733/j.issn.1007-0435.2017.06.016
[8] 刘广明, 李金彪, 王秀萍, 等. 外源水杨酸对黑麦草幼苗盐胁迫的缓解效应研究. 土壤学报, 2016, 53(4):995-1002.
[9] 张倩, 李笑佳, 张淑英. 硅对盐胁迫下棉花幼苗生长和渗透调节系统的影响. 华北农学报, 2019, 34(6):110-117.
doi: 10.7668/hbnxb.201751589
[10] 李润枝, 靳晴, 李召虎, 等. 水杨酸提高甘草种子萌发和幼苗生长对盐胁迫耐性的效应. 作物学报, 2020, 46(11):1810-1816.
doi: 10.3724/SP.J.1006.2020.04080
[11] 倪祥银, 齐泽民, 廖姝, 等. 外源水杨酸对NaCl胁迫下大豆种子萌发和幼苗生长生理的影响. 西北植物学报, 2014, 34(1):106-111.
[12] Shemi R, Wang R, Gheith E S M S, et al. Role of exogenous-applied salicylic acid,zinc and glycine betaine to improve drought-tolerance in wheat during reproductive growth stages. BMC Plant Biology, 2021, 21(1):574.
doi: 10.1186/s12870-021-03367-x
[13] 向警, 黄倩, 鞠春燕, 等. 外源褪黑素对盐胁迫下水稻种子萌发与幼苗生长的影响. 植物生理学报, 2021, 57(2):393-401.
[14] 张雪蒙, 亢超, 滕元旭, 等. 外源硫化氢和水杨酸对盐胁迫下加工番茄幼苗生长与生理特性的影响. 西北植物学报, 2022, 42(2):255-262.
[15] 张倩, 贺明荣, 陈为峰, 等. 外源一氧化氮与水杨酸对盐胁迫下小麦幼苗生理特性的影响. 土壤学报, 2018, 55(5):1254-1263.
[16] 付乃鑫, 贺明荣, 诸葛玉平, 等. 外源SA对盐胁迫下冬小麦幼苗生长的缓解效应及其机理. 中国农业大学学报, 2019, 24(3):10-17.
[17] 扈雪欢, 宁欢欢, 刘光照, 等. 外源SA对盐胁迫下颠茄生理生化、氮代谢及次生代谢的影响. 草业学报, 2017, 26(11):147-156.
doi: 10.11686/cyxb2017043
[18] 叶武威, 刘金定. 氯化钠和食用盐对棉花种子萌发的影响. 中国棉花, 1994(3):14-15.
[19] 李星星, 王立红, 高丽丽, 等. 外源水杨酸对盐胁迫下棉花幼苗激素含量及生长特性的影响. 干旱地区农业研究, 2017, 35(5):216-222.
[20] 王立红, 李星星, 孙影影, 等. 外源水杨酸对NaCl胁迫下棉花幼苗生长生理特性的影响. 西北植物学报, 2017, 37(1):154-162.
[21] 赵栗. 外源调节剂对棉花根系生长特性及酶活性的影响. 阿拉尔:塔里木大学, 2021.
[22] 辛慧慧, 李防洲, 侯振安, 等. 低温胁迫下棉花幼苗对外源水杨酸的生理响应. 植物生理学报, 2014, 50(5):660-664.
[23] 郑曦, 魏臻武, 武自念, 等. 不同燕麦品种(系)在扬州地区的适应性评价. 草地学报, 2013, 21(2):272-279.
doi: 10.11733/j.issn.1007-0435.2013.02.010
[24] 段文静, 孟妍君, 江丹, 等. 外源褪黑素对盐胁迫下棉花幼苗形态及抗氧化系统的影响. 中国生态农业学报(中英文), 2022, 30(1):92-104.
[25] Babar S, Siddiq E H, Hussain I, et al. Mitigating the effects of salinity by foliar application of salicylic acid in Fenugreek. Physiology Journal, 2014, 2014:869058.
[26] 苗永美, 宁宇, 曹玉杰, 等. 黄瓜萌芽期和苗期耐冷性评价. 应用生态学报, 2013, 24(7):1914-1922.
[27] Rajabi D A, Zahedi M, Ludwiczak A, et al. Foliar application of salicylic acid improves salt tolerance of sorghum (Sorghum bicolor (L.) Moench). Plants, 2022, 11(3):368.
doi: 10.3390/plants11030368
[28] 吴越, 苏华楠, 黄爱军, 等. 柑橘黄龙病菌侵染对甜橙叶片糖代谢的影响. 中国农业科学, 2015, 48(1):63-72.
doi: 10.3864/j.issn.0578-1752.2015.01.07
[29] 徐亚军, 赵龙飞, 邢鸿福, 等. 内生细菌对盐胁迫下小麦幼苗脯氨酸和丙二醛的影响. 生态学报, 2020, 40(11):3726-3737.
[30] 山雨思, 代欢欢, 何潇, 等. 外源茉莉酸甲酯和水杨酸对盐胁迫下颠茄生理特性和次生代谢的影响. 植物生理学报, 2019, 55(9):1335-1346.
[31] 苏李维, 李胜, 马绍英, 等. 葡萄抗寒性综合评价方法的建立. 草业学报, 2015, 24(3):70-79.
doi: 10.11686/cyxb20150307
[32] 陈锦芬, 顾开元, 贾雨豪, 等. 外源甜菜碱及水杨酸对锰胁迫下烟草生理特性的影响. 中国烟草学报, 2021, 27(2):79-86.
[33] 邵美琪, 赵卫松, 苏振贺, 等. 盐胁迫下枯草芽孢杆菌NCD-2对番茄促生作用及对土壤微生物群落结构的影响. 中国农业科学, 2021, 54(21):4573-4584.
doi: 10.3864/j.issn.0578-1752.2021.21.008
[34] 吴莺, 张淑英, 陈明媛, 等. SNP对盐胁迫下棉花幼苗光合抑制及氧化损伤的缓解效应. 植物生理学报, 2022, 58(4):757-766.
[35] Gao S, Yan R, Cao M, et al. Effects of copper on growth,antioxidant enzymes and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedling. Plant,Soil and Environment, 2008, 64:117-122.
[36] 陆安桥, 张峰举, 许兴, 等. 盐胁迫对湖南稷子苗期生长及生理特性的影响. 草业学报, 2021, 30(5):84-93.
doi: 10.11686/cyxb2020209
[37] 王红燕, 张淑英. 外源硫化氢对盐胁迫下棉花幼苗生长及渗透调节系统的影响. 西南农业学报, 2020, 33(11):2483-2489.
[38] Li J T, Qiu Z B, Zhang X W, et al. Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiologiae Plantarum, 2011, 33(3):835-842.
doi: 10.1007/s11738-010-0608-5
[39] 石婧, 刘东洋, 张凤华. 棉花幼苗对盐胁迫的生理响应与耐盐机理. 浙江农业学报, 2020, 32(7):1141-1148.
doi: 10.3969/j.issn.1004-1524.2020.07.01
[40] 王洪博, 付媛媛, 杨鸿基, 等. 基于隶属函数法对不同基因型棉种萌发期抗氧化能力的综合评价. 棉花学报, 2021, 33(5):393-403.
[1] Luan Jinhua, Song Xinyang, Wang Lei, Sun Lili, Cheng Yanshuang, Dong Hao, Zhang Jia, Cheng Xiaoyi, Xu Hai. Differences Research in Salt Tolerance of New Rice Lines at Seedling Stage in Liaoning [J]. Crops, 2023, 39(3): 20-26.
[2] Guo Hongxia, Wang Chuangyun, Deng Yan, Zhao Li, Zhang Liguang, Guo Hongxia, Qin Lixia, Gao Fei, Xi Ruizhen. Response of Quinoa to Low Nitrogen Stress [J]. Crops, 2023, 39(3): 221-229.
[3] Shan Jiaye, Zhang Xuewei, Yan Min, Yang Jian, Wang Fei, He Jixian, Hu Gang, Wang Yuchen, Jing Yanqiu, Lei Qiang. Effects of Spraying Rare Earth Micro-Fertilizer on Growth and Physiological Characteristics of Flue-Cured Tobacco under Drought Stress [J]. Crops, 2023, 39(2): 100-105.
[4] Niu Hanhui, Wei Xiaokai, Yu Shikang, Gu Huizhan, He Jixian, Zhang Qili, Li Junju, Jing Yanqiu, Lei Qiang. Effects of Exogenous Salicylic Acid on Physiological Characteristics of Flue-Cured Tobacco Seedlings under Low Temperature Stress [J]. Crops, 2023, 39(2): 151-156.
[5] Gu Yibiao, Yan Jiaqian, Xue Zhangyi, Shu Chenchen, Zhang Weiyang, Zhang Hao, Liu Lijun, Wang Zhiqin, Zhou Zhenling, Xu Dayong, Yang Jianchang, Gu Junfei. Different Responses of Roots of Rice Varieties to Salt Stress and the Underlying Mechanisms [J]. Crops, 2023, 39(2): 67-76.
[6] Zhai Caijiao, Zhang Jiao, Cui Shiyou, Chen Pengjun, Han Jijun. Effects of Slow/Controlled Release Fertilizer Application on Growth, Yield and Quality of Rice under Salt Stress [J]. Crops, 2023, 39(1): 143-151.
[7] Guo Huanle, Tang Bin, Li Han, Cao Zhongyang, Zeng Qiang, Liu Liangwu, Chen Zhihui. Comprehensive Evaluation of Phenotypic Traits and Classification of Maize Landraces in Hunan Province [J]. Crops, 2022, 38(6): 33-41.
[8] Wen Danni, Bao Lingran, Liu Mengmeng, Shen Bo. Transcriptome Analysis of OsWD40 Overexpression Rice Roots in Response to Salt Stress [J]. Crops, 2022, 38(6): 42-53.
[9] Li Wangsheng, Wang Xueqian, Yin Xilong, Shi Yang, Liu Dali, Tan Wenbo, Xing Wang. Comprehensive Evaluation of Drought Tolerance of Sugar Beet Germplasms at Seedling Stage [J]. Crops, 2022, 38(6): 54-60.
[10] Wang Jinxiang, Wang Yanzhi, Xing Lixuan, Liu Jianxia, Wang Runmei. Effects of GA3 on Root Growth and Osmotic Regulation of Lübaonuo Broomcorn Millet Seedlings under Salt Stress [J]. Crops, 2022, 38(6): 98-104.
[11] Wang Hanxiang, Li Guangcun, Xu Jianfei, Wang Wanxing, Jin Liping. Advances in Research on Salt Tolerance Mechanism of Plants [J]. Crops, 2022, 38(5): 1-12.
[12] Wang Yan, Li Tingyou, Wang Dou, Li Jiawei, Peng Wenlu, Rui Haiyun. Effects of Isosteviol on Growth of Wheat Seedlings under Salt Stress [J]. Crops, 2022, 38(5): 141-145.
[13] Hou Jingjing, Jin Fang, Zhao Li, Wang Bin. Comprehensive Evaluation of Agronomic and Quality Traits of 16 New Oil Flax Lines [J]. Crops, 2022, 38(5): 42-48.
[14] Lü Jianzhen, Ren Ying, Wang Hongyong, Zhang Tingjun, Ma Jianping, Zhao Kai. Comprehensive Phenotype Evaluation of 264 Major Foxtail Millet Bred Varieties (Lines) [J]. Crops, 2022, 38(4): 22-31.
[15] Zhang Chunyan, Zhuang Kezhang, Wu Ronghua, Li Jing, Li Xinxin, Wang Heng, Dong Xichen, Xu Geng, Wu Benhua. Comprehensive Evaluation of 11 Feed Oat Varieties in Southern Shandong by DTOPSIS Method Based on Entropy Weighting [J]. Crops, 2022, 38(4): 62-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!