Crops ›› 2023, Vol. 39 ›› Issue (4): 174-181.doi: 10.16035/j.issn.1001-7283.2023.04.025

Previous Articles     Next Articles

The Production Status Investigation and Analysis of Summer Maize in Beijing-Tianjin-Tangshan Region

Li Yuxin1,2(), Lu Min1, Zhao Jiuran2, Wang Ronghuan2(), Xu Tianjun2, Lü Tianfang2, Cai Wantao2, Zhang Yong2, Xue Honghe2, Liu Yueʼe2()   

  1. 1Beijing University of Agriculture, Beijing 100096, China
    2Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
  • Received:2022-02-10 Revised:2023-05-19 Online:2023-08-15 Published:2023-08-15

Abstract:

Beijing-Tianjin-Tangshan summer maize region located in the northernmost part of the winter wheat-summer maize rotation region in China, and the light and heat resources are very scarce during the growth period. Analyzing the main problems and countermeasures in maize production in this area, especially the problem of variety selection, is of great significance to stabilize maize yield of the region. In this study, we investigated the production situation of farmers in Beijing, Tianjin and Tangshan in the form of issuing questionnaires to farmers in districts, towns and villages with typical soil and climate characteristics, a total of 720 questionnaires were issued from 2016 to 2017, and 445 valid questionnaires were recovered. The findings were as follows, the maize yield of the Beijing-Tianjin-Tangshan summer maize region ranged from 4500kg/ha to 12 750kg/ha (coefficient of variation was 12.82%), and the average maize yield was 9003kg/ha. Farmers whose maize yield lower than 8250kg/ha accounted for the largest proportion, as high as 34.17%. The average planting density of the Beijing-Tianjin-Tangshan summer maize region was 63 945 plants/ha, and the 28.87% of farmers grew maize with a planting density lower than 60 000plants/ha. There are 61 maize varieties was cultivated in Beijing-Tianjin-Tangshan summer maize region. However, There were fewer varieties with higher utilization rate used by farmers, the utilization rates of 55 varieties were less than 3.00%. Meanwhile, the maize varieties selected by farmers had a long growth period, and accumulated temperature guarantee rates of 82.35% maize varieties were more than 90.00%, which was not conductive for maize high and stable yield.

Key words: Beijing-Tianjin-Tangshan region, Summer maize, Yield, Planting density, Variety selection

Fig.1

Distribution of maize yield in Beijing, Tianjin, Tangshan and the entire region in 2016-2017"

Fig.2

Age distribution of farmers in Beijing, Tianjin, Tangshan and the entire region in 2016-2017"

Fig.3

Distribution of education background of farmers in Beijing, Tianjin, Tangshan and the entire region in 2016-2017"

Fig.4

Distribution of maize planting density in Beijing, Tianjin, Tangshan and the entire region in 2016-2017 The unit of planting density is plant/ha"

Fig.5

The number of maize varieties in Beijing, Tianjin, Tangshan and the entire region in 2016-2017"

Table 1

The ratio of varieties application in Beijing, Tianjin, Tangshan and the entire region in 2016-2017"

地点Area 品种(使用率)Variety (usage rate, %)
北京
Beijing
郑单958(65.40)、京单58(11.39)、京单68(4.22)、京单28(3.38)、京农科728(3.38)、强盛1号(2.95)、京科389(1.69)、京玉56(1.27)、矮大棒系列(0.84)、华农118(0.84)、怀研10(0.84)、纪元1号(0.84)、宽城15(0.84)、京科968(0.84)、纪元168(0.42)、抗倒王子(0.42)、京单59(0.40)
天津
Tianjin
郑单958(34.71)、京农科728(26.45)、华农138(14.05)、先玉335(5.79)、纪元128(4.96)、和育187(4.13)、华农18(2.48)、潞玉36(1.65)、三北218(1.65)、京科968(0.83)、京单28(0.83)、联创808(0.83)、纪元101(0.83)、巡天1102(0.83)
唐山
Tangshan




伟科702(15.14)、郑单958(15.14)、沃玉964(6.42)、纪元128(5.96)、浚单20(5.50)、纪元168(4.13)、农大372(4.13)、矮大棒系列(3.67)、联科96(3.21)、裕丰303(3.21)、登海605(2.75)、沈玉19(2.75)、纪元198(2.29)、巡天969(2.29)、纪元20(1.83)、沈玉21(1.83)、铁元56(1.83)、中地175(1.83)、隆平208(1.38)、先玉335(1.38)、BM(0.92)、纪元120(0.92)、平单11(0.92)、沈单7(0.92)、沈玉22(0.92)、沈玉29(0.92)、肃玉1号(0.92)、田丰118(0.92)、中地77(0.92)、和玉1号(0.46)、承玉15(0.46)、华春1号(0.46)、纪元158(0.46)、京科968(0.46)、粒农128(0.46)、鲁宁184(0.46)、农大108(0.46)、铁研54(0.46)、伟科966(0.46)、先玉045(0.46)
京津唐
Jing-Jin-Tang
郑单958(39.02)、京农科728(10.33)、华农138(4.88)、伟科702(4.73)、京单58(3.87)、纪元128(3.59)、先玉335(2.44)、沃玉964(2.01)、浚单20(1.72)、矮大棒系列(1.43)、和育187(1.43)、纪元168(1.43)、京单28(1.43)、京单68(1.43)、农大372(1.29)、联科96(1.00)、强盛1号(1.00)、裕丰303(1.00)、登海605
京津唐
Jing-Jin-Tang




(0.86)、华农18(0.86)、沈玉19(0.86)、纪元198(0.72)、京科968(0.72)、巡天969(0.72)、纪元20(0.57)、京科389(0.57)、潞玉36(0.57)、三北218(0.57)、沈玉21(0.57)、铁元56(0.57)、中地175(0.57)、京玉56(0.43)、隆平208(0.43)、BM(0.29)、华农118(0.29)、怀研10(0.29)、纪元101(0.29)、纪元120(0.29)、纪元1号(0.29)、宽城15(0.29)、联创808(0.29)、平单11(0.29)、沈单7(0.29)、沈玉22(0.29)、沈玉29(0.29)、肃玉1号(0.29)、田丰118(0.29)、巡天1102(0.29)、中地77(0.29)、承玉15(0.14)、和玉1号(0.14)、华春1号(0.14)、纪元158(0.14)、京单59(0.14)、抗倒王子(0.14)、粒农128(0.14)、鲁宁184(0.14)、农大108(0.14)、铁研54(0.14)、伟科966(0.14)、先玉045(0.14)

Table 2

Environmental accumulated temperature guarantee rate of varieties in Beijing, Tianjin, Tangshan in 2016-2017"

地点 品种 ≥10℃积温 环境积温保障率
Area Variety ≥10℃ cumulative Environmental
temperature (℃) accumulated
temperature guarantee
rate (%)
北京 京科968 2983.9 100.69
Beijing
华农118 2876.85 97.08
京玉56 2867.27 96.76
怀研10 2797 94.39
京单68 2794.87 94.31
京科389 2771.23 93.52
郑单958 2771.16 93.51
纪元1号 2767.95 93.41
强盛1号 2764.57 93.29
北京 京单28 2762.35 93.22
Beijing
京单58 2747.27 92.71
纪元168 2734.8 92.29
京农科728 2730.31 92.14
抗倒王子 2728.8 92.08
京单59 2693.1 90.88
矮大棒系列 2643.3 89.2
宽城15 2551.85 86.11
天津 华农138 2885.39 97.79
Tianjin
巡天1102 2832.15 95.98
先玉335 2817.84 95.5
潞玉36 2816.83 95.46
三北218 2816.83 95.46
郑单958 2810.71 95.25
京农科728 2783.8 94.34
京单28 2783.65 94.34
和育187 2770.22 93.88
纪元128 2769.03 93.84
联创808 2760.45 93.55
华农18 2752.8 93.29
京科968 2737.1 92.76
纪元101 2709.2 91.81
唐山 铁元56 3213.87 108.29
Tangshan
中地77 3090.1 104.12
裕丰303 3072.41 103.52
沈玉29 3070.85 103.47
伟科966 3054.6 102.92
华春1号 3040 102.43
登海605 3034.14 102.23
和玉1号 3033.8 102.22
粒农128 3028.6 102.05
纪元168 2992.59 100.83
沈玉22 2970.75 100.1
唐山 纪元120 2962.25 99.81
Tangshan
沈玉21 2946.75 99.29
铁研54 2938.5 99.01
农大372 2920.11 98.39
沃玉964 2917.31 98.3
先玉335 2914.7 98.21
沈玉19 2900.27 97.72
中地175 2868.38 96.65
伟科702 2832.94 95.45
京科968 2739.9 92.32
鲁宁184 2739.9 92.32
先玉045 2709.7 91.3
承玉15 2695.4 90.82
平单11 2676.55 90.18
浚单20 2664.28 89.77
纪元128 2636.78 88.84
联科96 2628.03 88.55
BM 2620.35 88.29
郑单958 2610.88 87.97
巡天969 2606.38 87.82
隆平208 2583.9 87.06
沈单7 2561.8 86.32
矮大棒系列 2541.24 85.63
肃玉1号 2530.8 85.27
农大108 2523.7 85.03
田丰118 2389.25 80.5
纪元158 2382.8 80.29
纪元198 2376.42 80.07
纪元20 2355.93 79.38
[1] 陈印军, 王琦琪, 向雁. 我国玉米生产地位、优势与自给率分析. 中国农业资源与区划, 2019, 40(1):7-16.
[2] 赵久然, 王荣焕, 刘新香. 我国玉米产业现状及生物育种发展趋势. 生物产业技术, 2016(3):45-52.
[3] 李少昆, 王崇桃. 玉米高产潜力·途径. 北京: 科学出版社, 2010.
[4] Ma D L, Xie R Z, Niu X K, et al. Changes in the morphological traits of maize genotypes in China between the 1950s and 2000s. European Journal of Agronomy, 2014, 58:1-10.
doi: 10.1016/j.eja.2014.04.001
[5] Ma D L, Li S K, Zhai L C, et al. Response of maize barrenness to density and nitrogen increases in Chinese cultivars released from the 1950s to 2010s. Field Crops Research, 2020, 250:107766.
doi: 10.1016/j.fcr.2020.107766
[6] Duvick D N. The contribution of breeding to yield advances in maize (Zea mays L.). Advances in Agronomy, 2005, 86:83-145.
[7] 张涛. 对“多、 乱、杂”概念的辩析. 种子科技, 1995(1):17.
[8] Liu Y E, Li Y X, Lv T F, et al. The priority of management factors for reducing the yield gap of summer maize in the north of Huang- Huai-Hai region, China. Journal of Integrative Agriculture, 2021, 20(2):450-459.
doi: 10.1016/S2095-3119(20)63294-4
[9] 李少昆, 王克如, 谢瑞芝, 等. 实施密植高产机械化生产实现玉米高产高效协同. 作物杂志, 2016(4):1-6.
[10] Liu G Z, Hou P, Xie R Z, et al. Canopy characteristics of high-yield maize with yield potential of 22.5 Mg ha-1. Field Crops Research, 2017, 213:221-230.
doi: 10.1016/j.fcr.2017.08.011
[11] Lobell D B, Cassman K G, Field C B. Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environment and Resources, 2009, 34:179-204.
doi: 10.1146/energy.2009.34.issue-1
[12] Duvick D N.What is yield? Developing drought- and low N- tolerant maize. Proceedings of a symposium, March 25-29,1996. Mexico:CIMMYT,1997.
[13] Hammer G L, Dong Z S, Mclean G, et al. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn Belt?. Crop Science, 2009, 49:299-312.
doi: 10.2135/cropsci2008.03.0152
[14] 赵文媛. 郑单958与先玉335对玉米育种思路的启示. 辽宁农业科学, 2012(5):47-49.
[15] Olivier F C, Annandale J G. Thermal time requirements for the development of green pea (Pisum sativum L.). Field Crops Research, 1998, 56:301-307.
doi: 10.1016/S0378-4290(97)00097-X
[16] Dong J W, Liu J Y, Tao F L, et al. Spatio-temporal changes in annual accumulated temperature in China and the effects on cropping systems, 1980s to 2000. Climate Research, 2009, 40:37-48.
doi: 10.3354/cr00823
[17] Liu Y E, Hou P, Xie R Z, et al. Spatial variation in the utilization efficiency of accumulated temperature for maize and measures to efficiently use it in China. Crop Science, 2015, 55(4):1806-1817.
doi: 10.2135/cropsci2014.10.0735
[18] Dwyer L M, Stewart D W, Carrigan L, et al. Guidelines for comparisons among different maize maturity rating systems. Agronomy Journal, 1999, 91:946-949.
doi: 10.2134/agronj1999.916946x
[19] Liu Y E, Hou P, Xie R Z, et al. Spatial adaptabilities of spring maize to variation of climatic conditions. Crop Science, 2013, 53:1693-1703.
doi: 10.2135/cropsci2012.12.0688
[1] Zheng Fei, Chen Jing, Cui Yakun, Kong Lingjie, Meng Qingchang, Li Jie, Liu Ruixiang, Zhang Meijing, Zhao Wenming, Chen Yanping. Screening of High and Stable Yield Maize Varieties Suitable for Grain Mechanical Harvesting in Different Ecological Areas of the Huaibei Region [J]. Crops, 2023, 39(4): 110-117.
[2] Zhang Mingwei, Ding Jinfeng, Zhu Xinkai, Guo Wenshan. Analysis of High-Yielding Planting Density and Nitrogen Application in Super-Late Sowing Wheat Following Rice [J]. Crops, 2023, 39(4): 126-135.
[3] Chen Jian, Qi Wen, Jiang Hailing, Qian Zhongcang. Effects of Broccoli Waste Composting on Seedling Quality and Yield of Rice [J]. Crops, 2023, 39(4): 136-143.
[4] Ding Kaixin, Wang Lichun, Tian Guokui, Wang Haiyan, Li Fengyun, Pan Yang, Pang Ze, Shan Ying. Review on the Response Reasearch of Potato Growth and PhysiologicalCharacteristics to Water Stress [J]. Crops, 2023, 39(4): 16-21.
[5] Wang Liping, Bai Lanfang, Wang Tianhao, Wang Xiaoxuan, Bai Yunhe, Wang Yufen. Effects of Different Nitrogen Levels on Nitrogen Accumulation and Transport in Silage Maize [J]. Crops, 2023, 39(4): 165-173.
[6] Le Lihong, Liu Kaili, Chen Zhongping, Wang Binqiang, Tang Zhou, Cheng Feihu, Zhang Kun. Effects of Application Time of N Fertilizer at Panicle Differentiation Stage on the Nitrogen Use Efficiencies, Yield and Quality of One-Season Indica-Japonica Hybrid Rice [J]. Crops, 2023, 39(4): 195-201.
[7] Liu Hongjie, Ren Dechao, Ni Yongjing, Ge Jun, Zhang Suyu, Lü Guohua, Hu Xin. Effects of Straw Returning and Reducing Nitrogen Application on Soil Nutrients, Enzyme Activities and Wheat Yield [J]. Crops, 2023, 39(4): 210-214.
[8] Liu Ying, Gu Yunyi, Zhang Weiyang, Yang Jianchang. Research Advances in the Effects of Water and Nitrogen and Their Interaction on the Grain Yield, Water and Nitrogen Use Efficiencies of Wheat [J]. Crops, 2023, 39(4): 7-15.
[9] Yuan Shuai, Chen Jiwang, Chen Pingping, Yi Zhenxie. Response of Yield and Cd Accumulation and Distribution in Main Crop and Ratooning Rice of Xiangzaoxian 45 to Irrigation Methods [J]. Crops, 2023, 39(3): 101-108.
[10] Zhang Guozhong, Li Juan, Li Yucai, Jin Shoulin, Hong Ruke, Huang Dajun, Pu Shihuang, Shi Congbo, Duan Zilin, Ma Di, Chen Lijuan. The Effects of Nitrogen Fertilizer Reduction and Transplanting Density on Yield and Eating Quality of Japonica Hybrid Rice Dianheyou 615 [J]. Crops, 2023, 39(3): 109-115.
[11] Ma Yihu, He Xianbiao, Chen Jian, Tang Xuejun, Wang Xuhui, He Haohao, Jin Yuqing, Qi Wen, Jiang Hailing, Zhou Cui. Effects of Seedling Ages on Grain Yield and Quality of High Quality Rice in Southeastern Zhejiang Province [J]. Crops, 2023, 39(3): 116-125.
[12] Zhao Yun, Feng Guojun, Hu Xiangwei, Wumaierjiang·Kuerban , Li Pengbing, Li Cuimei, Akebota·Muheyati . Preliminary Report on Selection of Herbicide-Resistant Foxtail Millet Varieties Suitable for Planting in Kashgar, Xinjiang [J]. Crops, 2023, 39(3): 126-133.
[13] Xing Pipeng, Huang Yanfeng, Yi Siyuan, Lan Rujian, Pan Shenggang, Mo Zhaowen, Tian Hua, Duan Meiyang, Tang Xiangru. Effects of Foliar Ornithine Spraying at Heading Stage on Yield, Quality and 2-Acetyl-1-Pyrroline Biosynthesis of Fragrant Rice [J]. Crops, 2023, 39(3): 134-138.
[14] Li Junzhi, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai. Effects of Nitrogen Application Levels on Yield and Quality of Different Strong Gluten Wheat Varieties [J]. Crops, 2023, 39(3): 148-153.
[15] Song Chunyan, Wan Yunfan, Li Yu’e, Cai Andong, Hu Yanyan, Zhou Hui, Zhu Bo, Wang Bin. Relationships between Tiller Dynamic, Earbearing Tiller Rate and Yield of Double Cropping Rice under Elevated Temperature and CO2 Concentration [J]. Crops, 2023, 39(3): 159-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!