Crops ›› 2023, Vol. 39 ›› Issue (5): 249-254.doi: 10.16035/j.issn.1001-7283.2023.05.035

Previous Articles     Next Articles

The Effects of Different Tillage Practices on Seedbed Quality and Its Relationships with Seedling Population Construction and Grain Yield of Spring Maize

Cao Qingjun1(), Li Gang1(), Yang Hao1, Lou Yuyong2, Yang Fentuan1, Kong Fanli1, Li Xinbei1, Zhao Xinkai3, Jiang Xiaoli1()   

  1. 1Jilin Academy of Agriculture Sciences/Key Laboratory of Northeast Crop Physiology Ecology and Cultivation, Ministry of Agriculture and Rural Affairs, Changchun 130062, Jilin, China
    2Agricultural Machinery Technology Extension Station of Dongfeng County, Liaoyuan 130033, Jilin, China
    3Dongfeng New Giant Agricultural Machinery Planting Professional Cooperative, Liaoyuan 130033, Jilin, China
  • Received:2022-09-13 Revised:2023-07-17 Online:2023-10-15 Published:2023-10-16

Abstract:

To examine the effects of different tillage practices on soil water content, soil temperature, soil compaction of seedbed, as well as seedling quality, maize grain yield, a field experiment with two tillage practices of no-till (NT) and strip-till (ST) were conducted in aeolian sandy soil and black soil. The results showed that compared with NT, soil temperature under ST treatment in aeolian sandy soil at the depth of 5cm and 10cm layer increased by 0.73°C and 1.53°C, while increased by 2.60°C and 0.70°C in black soil, correspondingly; soil compaction under treatment of ST at the depth of 10-17cm in aeolian sandy soil were significantly decreased by 5.56%-28.21%, as well as decreased by 14.19%-56.90% in black soil at the depth of 5-17cm; the uniformity of seed sowing depth under ST were enhanced by 32.99% in aeolian sandy soil, and 146.90% in black soil. Consequently, the seed emergence time were shorted by 1.67 days in black soil, while increased the uniformity of shoot height by 31.23% in aeolian sandy soil and 58.32% in black soil. In addition, the maize grain yield under ST was increased by 2.27% in aeolian sandy soil and 11.57% in black soil, which mainly attributed to the enhancement of number of effective ears per unit area and 100-grain weight. Correlation analysis showed there was a significant correlation between the uniformity of seed sowing and the uniformity of shoot height and grain yield.

Key words: No-till, Strip-till, Spring maize, Seedbed quality, Yield

Fig.1

Flow chart diagram of different tillage methods"

Table 1

Comparison of soil moisture and temperature of seed bed under different tillage practices"

土壤类型
Soil type
耕作方式
Tillage type
土壤温度Soil temperature (℃) 土壤水分Soil moisture (%)
5cm 10cm 0~5cm 5~10cm
风沙土Aeolian sandy soil 免耕 24.78±0.17 18.40±0.21 8.04±0.13 10.11±0.32
条耕 25.50±0.40 19.93±0.08 7.74±0.15 9.65±0.14
黑土Black soil 免耕 22.38±0.48 17.48±0.13 19.11±0.18 22.17±0.08
条耕 24.98±0.14 18.18±0.17 17.98±0.75 22.24±0.40
变异来源Source of variation
土壤类型Soil type P=0.000823 P=0.000002 P=4.5755e-12 P=8.7436e-15
耕作方式Tillage type P=0.000296 P=0.000011 P=0.101 P=0.486
土壤类型×耕作方式Soil type ×tillage type P=0.015 P=0.020 P=0.319 P=0.337

Fig.2

Comparison of soil compaction of seed bed in aeolian sandy soil (a) and black soil (b) under no-till and strip-till ns indicates no significant difference;“*”and“**”mean significant differences at 0.05 and 0.01 levels, respectively, the same below"

Fig.3

Comparison of planting seed depth in aeolian sandy soil and black soil under no-till and strip-till Soil type: P < 0.001; Tillage type: P < 0.015; Soil type×tillage type: P = 0.226"

Table 2

Comparison of seed emergence quality under different tillage practices"

土壤类型
Soil type
耕作方式
Tillage type
出苗时间
Emergence time (d)
出苗率
Emergence rate (%)
株高
Shoot height (cm)
株高整齐度
Uniformity of shoot height
风沙土
Aeolian sandy soil
免耕 15.67±0.33 90.77±1.54 28.57±0.61 4.60±0.27
条耕 15.33±0.33 93.85±1.99 31.61±0.41 6.04±0.21
黑土Black soil 免耕 19.00±0.00 85.38±0.77 24.79±1.16 4.74±0.27
条耕 17.33±0.33 90.77±0.89 29.95±0.69 7.50±0.08
变异来源Source of variation
土壤类型Soil type P=0.000015 P=0.005 P=0.019 P=0.007
耕作方式Tillage type P=0.009 P=0.005 P=0.052 P=0.000012
土壤类型×耕作方式Soil type×tillage type P=0.051 P=0.369 P=0.985 P=0.016

Table 3

Comparison of maize grain yield and its components under different tillage practices"

土壤类型
Soil type
耕作方式
Tillage type
籽粒产量
Grain yield (kg/hm2)
单位面积有效穗数
Ear number per unit (ear/m2)
穗粒数
Grain number per ear
百粒重
100-grain weight (g)
风沙土Aeolian sandy soil 免耕 10 688.93±294.11 6.10±0.07 573.00±5.57 35.47±0.82
条耕 10 932.21±345.46 6.23±0.03 581.33±8.21 36.77±0.42
黑土Black soil 免耕 10 957.70±211.54 5.87±0.03 611.00±8.88 42.57±0.25
条耕 12 225.88±421.31 6.23±0.09 631.00±10.3 44.17±0.25
变异来源Source of variation
土壤类型Soil type P=0.109 P=0.187 P=0.001 P=4.6326e-7
耕作方式Tillage type P=0.016 P=0.006 P=0.130 P=0.019
土壤类型×耕作方Soil type ×tillage type P=0.053 P=0.032 P=0.507 P=0.772

Fig.4

The relationship of uniformity of shoot height under different tillage practices with coefficients of variation on the soil seed depth and maize grain yield"

[21] 米娜, 张富荣, 赵一俊, 等. 玉米间隔耕作秸秆条带还田增密集成技术光热资源利用效率评估. 农业资源与环境学报, 2021, 38(3):475-483.
[22] 万晴, 张玉芹, 杨恒山, 等. 条带耕作错位种植模式对西辽河平原农田土壤理化性状的影响. 内蒙古民族大学学报(自然科学版), 2022, 37(2):132-136.
[23] Fernández F G, Sorensen B A, Villamil M B. A comparison of soil properties after five years of no-till and strip-till. Agronomy Journal, 2015, 107(4):1339-1346.
doi: 10.2134/agronj14.0549
[24] 侯海鹏, 丁在松, 马玮, 等. 条带深松耕作方式对密植夏玉米产量性能的影响. 玉米科学, 2015, 23(6):71-75,83.
[1] 菅立群, 张翼飞, 杨克军, 等. 播种至苗期不同阶段低温对玉米幼苗生长及生理抗性的影响. 作物杂志, 2020(6):61-68.
[2] 赵宏波, 何进, 李洪文, 等. 秸秆还田方式对种床土壤物理性质和小麦生长的影响. 农业机械学报, 2018, 49(增1):60-67.
[3] Fanigliulo R, Pochi D, Servadio P. Conventional and conservation seedbed preparation systems for wheat planting in silty-clay soil. Sustainability, 2021, 13(11):6506.
doi: 10.3390/su13116506
[4] 王俊, 李强, 任禾, 等. 吉林省西部不同耕作模式下秸秆还田土壤团聚体特征. 植物营养与肥料学报, 2020, 26(4):603-612.
[25] 张玉芹, 杨恒山, 李从锋, 等. 条带耕作错位种植对灌区春玉米产量形成与冠根特征的影响. 作物学报, 2020, 46(6):902-913.
doi: 10.3724/SP.J.1006.2020.93053
[5] 王立春, 马虹, 郑金玉. 东北春玉米耕地合理耕层构造研究. 玉米科学, 2008, 16(4):13-17.
[6] 闫伟平, 边少锋, 赵洪祥, 等. 半干旱区深松垄作对春玉米生长及产量的影响. 东北农业科学, 2016, 41(6):21-25.
[7] 谷思玉, 朱玉伟, 郭兴军, 等. 不同耕作方式下黑土物理性状及其对玉米苗期生长的影响. 华北农学报, 2018, 33(4):226-231.
doi: 10.7668/hbnxb.2018.04.032
[8] 曹庆军. 吉林省半旱区耕作模式研究. 长春:吉林大学, 2012.
[9] 李兴光, 李晓宇. 小麦/玉米萌发和苗期生长对干旱与低温的响应. 土壤与作物, 2019, 8(3):266-272.
[10] 胡宇, 具红光, 赵鑫, 等. 不同覆盖条件对吉林省东部冷凉区中晚熟玉米产量的影响. 东北农业科学, 2019, 44(5):20-25,42.
[11] Cao Q, Li G, Yang F, et al. Eleven-year mulching and tillage practices alter the soil quality and bacterial community composition in Northeast China. Archives of Agronomy and Soil Science, 2022, 68(9):1274-1289.
doi: 10.1080/03650340.2021.1890719
[12] 石东峰, 米国华. 玉米秸秆覆盖条耕技术及其应用. 土壤与作物, 2018, 7(3):349-355.
[13] 曹庆军, 杨粉团, 孔凡丽, 等. 秸秆全量还田条耕种植模式对春玉米出苗质量与产量的影响. 东北农业科学, 2020, 45(3):6-11.
[14] 郝展宏, 沙野, 米国华. 东北地区玉米秸秆覆盖技术应用现状与对策. 玉米科学, 2021, 29(3):100-110.
[15] 戴皖宁, 王丽学, Khan I, 等. 秸秆覆盖和生物炭对玉米田间地温和产量的影响. 生态学杂志, 2019, 38(3):719-725.
[16] Li F, Chen L, Zhang J, et al. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Frontiers in Microbiology, 2017, 8:187.
doi: 10.3389/fmicb.2017.00187 pmid: 28232824
[17] 李瑞平. 吉林省半湿润区不同耕作方式对土壤环境及玉米产量的影响. 哈尔滨:东北农业大学, 2021.
[18] Potratz D J, Mourtzinis S, Gaska J, et al. Strip-till, other management strategies, and their interactive effects on corn grain and soybean seed yield. Agronomy Journal, 2020, 112(1):72-80.
doi: 10.1002/agj2.v112.1
[19] 马效松. 生物炭对北方寒区典型黑土水热环境效应的影响分析. 哈尔滨:东北农业大学, 2020.
[20] 桂金鹏. 土壤导热系数影响因素及模型分析. 太原:太原理工大学, 2020.
[1] Wang Zhenlong, Su Cuicui, Zhou Qi, Deng Chaochao, Zhou Yanfang. The Effects of Reducing Nitrogen Fertilizer and Applying Organic Fertilizer on the Yield, Quality, and Soil Quality of Helianthus tuberosus L. [J]. Crops, 2023, 39(5): 104-109.
[2] Liu Yan, Qu Hang, Xing Yuehua, Wang Xiaohui, Gong Liang. Effects of New Types of Nitrogen Fertilizer on Rice Growth, Nitrogen Use Efficiency and Economic Benefit [J]. Crops, 2023, 39(5): 110-116.
[3] Liu Qiuyuan, Li Meng, Gao Yangguang, Shi Mengyu, Wei Yunfei, Ji Xin, Li Li, Liu Yali, Wang Fujuan. Effects of Different Nitrogen Fertilization Patterns on Yield and Quality of Conventional Japonica Rice under Reduced Nitrogen [J]. Crops, 2023, 39(5): 131-137.
[4] Yang Mei, Yang Weijun, Gao Wencui, Jia Yonghong, Zhang Jinshan. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Dry Matter Transport, Agronomic Characteristics and Yield of Winter Wheat in Irrigation Area [J]. Crops, 2023, 39(5): 138-144.
[5] Zhang Rong, Chen Xiaowen, Lu Ping, You Yanrong, Zhou Delu, Li Deming. Effects of Different Mulching Modes on Soil Moisture, Temperature and Yield of Potato in Dry Land [J]. Crops, 2023, 39(5): 145-150.
[6] Wu Xueqin, Liu Kaiyu, Han Chunhua, Alimujiang·Kelaimu , Cui Yannan, Li Jiangyu, Ma Chunmei, Zhong Wenfan, Zhao Qiang. Effects of 14% Thiobenzene-Dioxalon on Defoliation Ripening, Yield and Quality of Cotton [J]. Crops, 2023, 39(5): 164-169.
[7] Guan Qinglin, Piao Shengyuan, Zhang Siwei, Wang Jun, Lei Yunkang, Zhong Qiu, Zhao Mingqin. Effects of Combined Application of Medium-Trace Elements on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism, Yield and Quality of Cigar Tobacco [J]. Crops, 2023, 39(5): 187-196.
[8] Tian Xiaoqin, Wang Dan, Li Zhuo, Liu Yonghong, Li Wei. Effects of Ridge and Mulching on Yield and Water Use Efficiency of Rapeseed [J]. Crops, 2023, 39(5): 204-211.
[9] Yi Bing, Liu Jingang, Song Dianxiu, Wang Dexing, Zhao Mingzhu, Liu Xiaohong, Sun Enyu, Cui Liangji. Study on Land Productivity and Interspecific Competition of Sunflower and Millet Intercropping in Arid Areas [J]. Crops, 2023, 39(5): 219-223.
[10] Zhao Weizhe, Du Chunfang, Sun Xuan, Yao Lin, Xian Shuanshi, Zhang Gaoyang. Effects of Stalk Picking on Economic Characteristics and Yield of Oilseed and Vegetable Rape [J]. Crops, 2023, 39(5): 224-230.
[11] Liu Hui, Long Xueyi, Jiao Yan, Wang Lihong. Effects of Combined Application of Biochar and Phosphate Fertilizer on Rice Growth and Yield [J]. Crops, 2023, 39(5): 238-248.
[12] Zhang Dongxu, Hu Danzhu, Yan Jinlong, Feng Liyun, Wu Zhiyuan, Zhang Junling, Li Yanhua. Effects of Spraying Streptomyces on Yield and Photosynthetic Characteristics of Late-Sown Wheat under Different Crop Rotations [J]. Crops, 2023, 39(5): 255-263.
[13] Zhang Shangpei, Yang Junxue, Luo Shiwu, Wang Yong, Zhang Xiaojuan, Cheng Bingwen. Genetic Diversity and Yielding Ability Analysis of Agronomic Traits in Broom Corn Millet [J]. Crops, 2023, 39(5): 37-42.
[14] Zheng Fei, Chen Jing, Cui Yakun, Kong Lingjie, Meng Qingchang, Li Jie, Liu Ruixiang, Zhang Meijing, Zhao Wenming, Chen Yanping. Screening of High and Stable Yield Maize Varieties Suitable for Grain Mechanical Harvesting in Different Ecological Areas of the Huaibei Region [J]. Crops, 2023, 39(4): 110-117.
[15] Zhang Mingwei, Ding Jinfeng, Zhu Xinkai, Guo Wenshan. Analysis of High-Yielding Planting Density and Nitrogen Application in Super-Late Sowing Wheat Following Rice [J]. Crops, 2023, 39(4): 126-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!