Crops ›› 2024, Vol. 40 ›› Issue (3): 180-185.doi: 10.16035/j.issn.1001-7283.2024.03.024

Previous Articles     Next Articles

Physiological and Biochemical Responses of Foxtail Millet to Low Temperature Stress at Seedling Stage

Du Jie(), Su Fuli, Xia Qing, Zhi Hui, Wang Wenxia()   

  1. Department of Life Sciences, Lüliang University, Lüliang 033000, Shanxi, China
  • Received:2023-09-01 Revised:2023-12-21 Online:2024-06-15 Published:2024-06-18

Abstract:

This study investigated the physiological response mechanism of foxtail millet seedlings to low temperature stress, screening of cold-tolerant germplasm, and provided theoretical basis for the selection and breeding of cold-tolerant cultivar. The cold-tolerant foxtail millet cultivar Jingu 21 and the cold-sensitive foxtail millet cultivar Changnong 48 were used as test materials, and two treatments of low temperature (8 oC) and control (25 oC) were set up, and height, fresh and dry weights, antioxidant enzyme activities and osmoregulatory substances of seedlings under each treatment were determined before the low temperature treatment, after three days of the low temperature treatment and after three days of the recovery treatment, respectively. The results showed that, compared with control, after three days of low-temperature stress treatment in foxtail millet, all the indicators of seedling agronomic traits were significantly reduced, and the reduction of cold-sensitive cultivar was higher than that of cold-tolerant cultivar. After three days of low-temperature stress treatment, SOD, POD and CAT activities of seedling leaves of cold-tolerant cultivar showed increasing trend, and MDA contents increased significantly. The MDA content of cold-sensitive cultivar was significantly higher than that of cold-tolerant cultivar (P < 0.05), and they had stronger protective enzyme activities.

Key words: Foxtail millet, Seedling stage, Low temperature stress, Physiological and biochemical responses

Table 1

Effects of low temperature stress on agronomic characteristics of foxtail millet seedlings"

品种
Cultivar
处理
Treatment
苗高
Seedling height (cm)
鲜重(mg/100株)
Fresh weight (mg/100 plants)
干重(mg/100株)
Dry weight (mg/100 plants)
JG21 处理前 28.80b 166.44d 24.51g
低温处理3 d后 27.37b 197.08c 37.12d
对照处理3 d后 30.87a 282.83a 41.86b
恢复处理3 d后 28.43b 208.55bc 39.23c
对照恢复3 d后 31.67a 296.85a 44.05a
CN48 处理前 21.87c 152.13e 23.03h
低温处理3 d后 18.70d 166.44d 31.84f
对照处理3 d后 22.60c 197.08c 34.13e
恢复处理3 d后 19.17d 179.50d 33.82e
对照恢复3 d后 23.47c 218.55b 37.69d

Table 2

Effects of low temperature stress on SOD activities of foxtail millet seedlings U/g FW"

品种Cultivar 处理Treatment A B C
JG21 CK 143.19b 138.52b 151.76b
LT 143.19b 221.85a 198.71ab
CN48 CK 125.85b 116.57b 127.30b
LT 125.85b 167.78a 162.15a

Table 3

Effects of low temperature stress on POD activities of foxtail millet seedlings U/(g·min)"

品种Cultivar 处理Treatment A B C
JG21 CK 796.19b 761.73b 745.50b
LT 796.19b 1064.83a 967.19ab
CN48 CK 565.63ab 528.89b 519.36b
LT 565.63ab 671.33a 642.73a

Table 4

Effects of low temperature stress on CAT activities of foxtail millet seedlings μmol/(g·min)"

品种Cultivar 处理Treatment A B C
JG21 CK 358.09b 346.71b 344.50b
LT 358.09b 481.94a 455.21ab
CN48 CK 304.01ab 288.39b 276.71b
LT 304.01b 373.33a 356.67a

Table 5

Effects of low temperature stress on MDA contents of foxtail millet seedlings mmol/g FW"

品种Cultivar 处理Treatment A B C
JG21 CK 7.73b 8.03ab 8.21ab
LT 7.73b 9.34a 9.61a
CN48 CK 8.62b 8.73b 8.92b
LT 8.62b 11.18a 11.74a

Table 6

Effects of low temperature stress on soluble protein contents of foxtail millet seedlings mg/mL"

品种Cultivar 处理Treatment A B C
JG21 CK 12.44b 12.75ab 12.07b
LT 12.44b 14.76a 13.23ab
CN48 CK 7.35b 7.17b 7.64ab
LT 7.35b 8.47a 8.16a
[1] 王学蜜. 乡村振兴视域下清水江流域民族传统农耕文化研究. 贵阳: 贵州大学, 2022.
[2] 张雄. 黄土高原小杂粮生产可持续发展研究. 杨凌: 西北农林科技大学, 2003.
[3] 禾璐, 杨阳, 王宇珅, 等. 谷子功能基因发掘现状及展望. 山西农业大学学报, 2022, 42(4):1-10.
[4] 吴立根, 屈凌波. 谷子的营养功能特性与加工研究进展. 食品研究与开发, 2018, 39(15):191-196.
[5] 王建雄.山西吕梁地区近50年气候变化与主要气象灾害的研究. 兰州:兰州大学, 2012.
[6] Zhao X, Ma K, Li Z, et al. Transcriptome Analysis reveals brassinolide signaling pathway control of foxtail millet seedling starch and sucrose metabolism under freezing stress, with implications for growth and development. International Journal of Molecular Sciences, 2023, 24(14):11590.
[7] Shahzad R, Ahmed F, Wang Z, et al. Comparative analysis of two phytochrome mutants of tomato reveals specific physiological, biochemical, and molecular responses under chilling stress. Journal of Genetic Engineering and Biotechnology, 2020, 18(1):1-15.
[8] 束胜, 胡晓辉, 王玉, 等. 蔬菜作物逆境生理与抗逆栽培研究进展. 南京农业大学学报, 2022, 45(6):1087-1098.
[9] 闫锋. 萌发期低温胁迫对谷子幼苗生长及产量的影响. 黑龙江农业科学, 2022(10):13-16.
[10] 董扬. 糜子萌芽期耐冷种质资源综合评价体系构建. 江苏农业科学, 2022, 50(21):82-89.
[11] 沈倩, 张思平, 刘瑞华, 等. 棉花出苗期耐冷综合评价体系的构建及耐冷指标筛选. 中国农业科学, 2022, 55(22):4342- 4355.
doi: 10.3864/j.issn.0578-1752.2022.22.002
[12] 董扬. 240份糜子种质资源萌芽期耐冷性综合评价及筛选. 干旱地区农业研究, 2022, 40(6):23-33.
[13] Sayed E G, Mahmoud A W M, Abdel-Wahab A, et al. Rootstock priming with shikimic acid and Streptomyces griseus for growth, productivity, physio-biochemical, and anatomical characterisation of tomato grown under cold stress. Plants, 2022, 11(21):2822.
[14] 项洪涛, 郑殿峰, 何宁, 等. 植物对低温胁迫的生理响应及外源脱落酸缓解胁迫效应的研究进展. 草业学报, 2021, 30(1):208-219.
doi: 10.11686/cyxb2020091
[15] 马泉, 张玉雪, 陶源, 等. 春季不同时期低温对小麦光合特性和粒重形成的影响. 麦类作物学报, 2022, 42(2):226-235.
[16] 陈红阳, 贾琰, 赵宏伟, 等. 结实期低温胁迫对水稻强、弱势粒淀粉形成与积累的影响. 中国水稻科学, 2022, 36(5):487-504.
doi: 10.16819/j.1001-7216.2022.211105
[17] 李合生. 现代植物生理学. 第3版. 北京: 高等教育出版社, 2012.
[18] Phanthasin K, Shin Y, Imran A M, et al. Combinational variation temperature and soil water response of stomata and biomass production in maize, millet, sorghum and rice. Plants, 2022, 11 (8):1039.
[19] 王慰亲. 种子引发促进直播早稻低温胁迫下萌发出苗的机理研究. 武汉: 华中农业大学, 2019.
[20] 王亚男, 范思静. 低温胁迫对水稻幼苗叶片生理生化特性的影响. 安徽农业科学, 2017, 45(5):8-9.
[21] 何汛锋, 唐双勤, 田雪飞, 等. 芽期低温胁迫对早籼稻生长特性及产量的影响. 南方农业学报, 2020, 51(12):2911-2918.
[22] 王海媛, 张坤, 段里成, 等. 不同催芽程度播种后低温对中嘉早17成苗率及生长特性的影响. 江西农业学报, 2017, 29 (10):19-23.
[23] 张嘉伟. 水稻芽期耐低温种质资源及抗寒剂筛选. 长沙: 湖南农业大学, 2020.
[24] 罗艳. 播期和水分对糜子的生长发育及籽粒品质的影响. 杨凌: 西北农林科技大学, 2022.
[25] 宫珂. 温度与水分变化下无芒雀麦生态适应性研究. 乌鲁木齐: 新疆农业大学, 2022.
[26] 王文霞, 吴自明, 曾勇军, 等. 水氮耦合对直播早籼稻苗期低温冷害的调控效应. 作物杂志, 2023(2):83-90.
[27] 赵晶晶, 詹万龙, 周浓. 非生物胁迫下植物体内活性氧和丙酮醛代谢的研究进展. 南方农业学报, 2022, 53(8):2099-2113.
[28] 刘瑞媛, 董喜存, 梁开平, 等. 不同品种甜高粱苗期耐寒性分析研究. 中国农学通报, 2018, 34(31):19-26.
doi: 10.11924/j.issn.1000-6850.casb17080048
[29] Guo H, Wu T K, Li S X, et al. The Methylation Patterns and transcriptional responses to chilling stress at the seedling stage in rice. International Journal of Molecular Sciences, 2019, 20(20):5089.
[30] Yu J, Cang J, Lu Q W, et al. ABA enhanced cold tolerance of wheat ʻdn1ʼ via increasing ROS scavenging system. Plant Signaling and Behavior, 2020, 15(8):1780403.
[31] Yang H L, Wang T J, Yu X H, et al. Enhanced sugar accumulation and regulated plant hormone signalling genes contribute to cold tolerance in hypoploid Saccharum spontaneum. BMC Genomics, 2020, 21(1):507.
[32] Kim H M, Jeong S G, Hwang I M, et al. Efficient citrus (Citrus unshiu) byproduct extract-based approach for Lactobacillus sakei WiKim 31 shelf-life extension. ACS Omega, 2021, 6(51):35334- 35341.
[33] 孙佳平, 张福顺, 邳植, 等. 低温胁迫对甜菜抗氧化系统的影响. 中国农学通报, 2022, 38(12):26-32.
doi: 10.11924/j.issn.1000-6850.casb2021-0844
[34] Yin D M, Chen S M, Chen F D, et al. Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environmental and Experimental Botany, 2009, 67(1):87-93.
[35] Biankas S. The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Frontiers in Plant Science, 2014, 5:685.
doi: 10.3389/fpls.2014.00685 pmid: 25538719
[36] 郭慧, 李树杏, 甘雨, 等. 水稻幼苗期低温胁迫的生理响应及转录组分析. 西南农业学报, 2023, 36(10):2116-2125.
[37] 陈翔, 胡雨喆, 陈甜甜, 等. 小麦抗低温逆境化控技术研究进展. 植物营养与肥料学报, 2023, 29(8):1543-1555.
[1] Song Hui, Wang Tao, Xing Lu, Liu Junfang, Zhang Yang, Liu Jinrong, Chen Hongqi, Feng Baili. Transcriptome Analysis of Different Foxtail Millet (Setaria italica L.) Varieties Treated with Imazapic Herbicide [J]. Crops, 2024, 40(3): 13-22.
[2] Liu Ying, Yin Zequn, Wu Baichen, Xu Mingli, Liu Chang, Shi Huishu, Pang Bo, Miao Xingfen. Effects of Compound Saline-Alkali Stress on Germination Period of Different Foxtail Millet Varieties and Screening of Saline-Alkali Tolerance Varieties [J]. Crops, 2024, 40(3): 207-215.
[3] Yang Shanwei, Liang Renmin, Zhao Haihong, Wei Guijian, He Dengmei, Huang Xumou, Hu Zhongyin, Wei Chunxiang, Xu Chang, Wei Minchao, Wei Shuang, Luo Jiteng, Xu Yingying, Zhang Xiuhua, Han Yi, Wang Shiqiang. Effects of Low Temperature Stress at Booting Stage on Yield and Its Components of High Quality Fragrant Rice [J]. Crops, 2023, 39(6): 143-149.
[4] Dong Haosheng, Wang Qi, Yan Peng, Xu Yanli, Zhang Wei, Lu Lin, Dong Zhiqiang. Effects of ECK on the Lodging Resistance and Yield of Foxtail Millet Stem [J]. Crops, 2023, 39(6): 181-189.
[5] Zhao Lijie, Zhao Haiyan, Han Genlan, Wang Jiang, Nie Mengʼen, Du Huiling, Yuan Xiangyang, Dong Shuqi. Effects of Nitrogen Fertilizer Combined with Organic Fertilizer on Quality of Millet [J]. Crops, 2023, 39(6): 224-232.
[6] Shen Tianyu, Wang Yuan, Dong Erwei, Wang Jinsong, Liu Qiuxia, Jiao Xiaoyan. Effects of Nitrogen and Delayed Harvest on Foxtail Millet Yield and Grain Quality [J]. Crops, 2023, 39(6): 233-242.
[7] Zhao Haiyan, Zhao Lijie, Han Genlan, Wang Jiang, Wang Zijian, Nie Meng’en, Du Huiling, Yuan Xiangyang, Dong Shuqi. Effects of Nitrogen and Zinc Application on Root Morphology and Zinc Content in Foxtail Millet [J]. Crops, 2023, 39(4): 152-158.
[8] Zhao Yun, Feng Guojun, Hu Xiangwei, Wumaierjiang·Kuerban , Li Pengbing, Li Cuimei, Akebota·Muheyati . Preliminary Report on Selection of Herbicide-Resistant Foxtail Millet Varieties Suitable for Planting in Kashgar, Xinjiang [J]. Crops, 2023, 39(3): 126-133.
[9] Luan Jinhua, Song Xinyang, Wang Lei, Sun Lili, Cheng Yanshuang, Dong Hao, Zhang Jia, Cheng Xiaoyi, Xu Hai. Differences Research in Salt Tolerance of New Rice Lines at Seedling Stage in Liaoning [J]. Crops, 2023, 39(3): 20-26.
[10] He Shuiling, Zhao Xia, Wu Mingqi, Wang Dongsheng. Effects of Exogenous Nitric Oxide and Hydrogen Sulfide on the Germination of Foxtail Millet Seeds [J]. Crops, 2023, 39(2): 138-144.
[11] Niu Hanhui, Wei Xiaokai, Yu Shikang, Gu Huizhan, He Jixian, Zhang Qili, Li Junju, Jing Yanqiu, Lei Qiang. Effects of Exogenous Salicylic Acid on Physiological Characteristics of Flue-Cured Tobacco Seedlings under Low Temperature Stress [J]. Crops, 2023, 39(2): 151-156.
[12] Ma Jiyu, Wang Shuang, Li Yun, Guo Zhenqing, Wang Jian, Lin Xiaohu, Han Yucui. Effects of Planting Density on Agronomic Characteristics and Yield of Foxtail Millet [J]. Crops, 2023, 39(2): 222-228.
[13] Wang Huimin, Li Minghao, Li Yun, Li Han, Wang Shuang, Lin Xiaohu, Han Yucui. Identification and Evaluation of Salt-Alkali Tolerance of Foxtail Millet Cultivars (Lines) at Germination Stage [J]. Crops, 2023, 39(2): 57-66.
[14] Wang Wenxia, Wu Ziming, Zeng Yongjun, Pan Xiaohua, Shi Qinghua, Zeng Yanhua. Regulatory Effects of Water-Nitrogen Coupling on Low Temperature Chilling Damage of Direct-Seeded Early Indica Rice at Seedling Stage [J]. Crops, 2023, 39(2): 83-90.
[15] Bian Shuhui, Xing Guofang, Liang Xin, Zhang Shuwei, Wang Jianing, Ye Haoyu. Effects of Different Forms Selenium and Dosage on Foxtail Millet Growth and Physiology at Seedling Stage [J]. Crops, 2023, 39(1): 152-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!