Crops ›› 2023, Vol. 39 ›› Issue (6): 143-149.doi: 10.16035/j.issn.1001-7283.2023.06.020

Previous Articles     Next Articles

Effects of Low Temperature Stress at Booting Stage on Yield and Its Components of High Quality Fragrant Rice

Yang Shanwei1(), Liang Renmin2, Zhao Haihong3, Wei Guijian2, He Dengmei1, Huang Xumou2, Hu Zhongyin1, Wei Chunxiang2, Xu Chang1, Wei Minchao2, Wei Shuang1, Luo Jiteng2, Xu Yingying1, Zhang Xiuhua2, Han Yi1, Wang Shiqiang3()   

  1. 1Agricultural College of Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2Hechi Agricultural Science Research Institute/Hechi Branch, Guangxi Academy of Agricultural Sciences, Yizhou 546306, Guangxi, China
    3College of Chemical and Biological Engineering, Hechi University/Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/Guangxi Colleges and Universities Key Laboratory of Exploitation and Utilization of Microbial and Botanical Resources, Hechi 546300, Guangxi, China
  • Received:2023-04-29 Revised:2023-09-07 Online:2023-12-15 Published:2023-12-15

Abstract:

In order to investigate the effect of low temperature stress on the yield and its components of high quality fragrant rice, cold-sensitive cultivar Suijing 4 and cold-tolerant cultivar Kendao 08-169 were used as experimental materials, and were treated at 17℃ for 0 (CK), 3, 6 and 9d at booting stage. The effects of low temperature stress at booting stage on yield and its components of different parts of panicle of high quality fragrant rice were studied. The results showed low temperature stress at booting stage decreased the yield and its components of high quality fragrant rice. The number of grains per panicle in the upper, middle and lower parts of panicle of the two varieties were significantly decreased under low temperature stress for 3, 6 and 9d, and the number of grains per panicle in the whole panicle decreased. Low temperature stress on 6 and 9d significantly decreased the 1000-grain weight of the upper, middle and lower parts of panicle of the two varieties, and decreased the 1000-grain weight of the whole panicle. Low temperature stress for six days significantly decreased the seed-setting rate of the upper, middle and lower of Suijing 4 and the parts seed-setting rate of lower parts of Kendao 08-169, and low temperature stress for nine days significantly decreased the seed-setting rate of the upper, middle and lower parts of the two varieties, and the seed-setting rate of the whole panicle decreased. The yield components of cold-tolerant variety were different in response to low temperature stress, and taking low temperature six days the standard, low temperature stress at booting stage had a greater effect on the seed- setting rate in the upper and middle parts of cold-sensitive cultivar Suijing 4 and the 1000-grain weight at the lower parts of cold-sensitive cultivated rice Kendao 08-169. Therefore, low temperature stress at booting stage decreased the yield of high-quality fragrant rice by reducing the number of grains per panicle, 1000-grain weight and seed- setting rate at the booting stage.

Key words: High quality fragrant rice, Booting stage, Low temperature stress, Yield, Yield components

Table 1

Effects of low temperature stress at booting stage on yield and its components of high quality fragrant rices"

品种
Variety
处理天数
Treatment days (d)
每穗粒数
Number of grains per spike
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
产量(g/盆)
Yield (g/plot)
A1 B1(0) 64.11±0.93aA 94.11±0.16aA 26.33±0.28bcB 92.07±0.88aA
B2(3) 50.24±0.65cC 93.54±0.26abA 26.15±0.29cB 70.45±1.13bcB
B3(6) 41.83±0.68dD 83.82±1.40cB 24.03±0.32eD 49.25±0.62dC
B4(9) 35.05±0.92eE 52.51±1.11eD 22.36±0.46fE 25.70±0.49fD
A2 B1(0) 67.09±0.76aA 93.28±0.45abA 29.21±0.31aA 96.31±1.26aA
B2(3) 55.68±0.81bB 92.38±0.56abA 28.67±0.45aA 74.76±1.34bB
B3(6) 51.59±0.87cBC 89.16±0.57bAB 26.72±0.13bB 65.66±1.47cB
B4(9) 42.65±0.78dD 66.08±0.24dC 24.87±0.11dC 34.10±0.70eD
FA 62.2610** 17.1030** 428.4200** 28.5940**
FB 191.3600** 251.2080** 227.3300** 300.2290**
FA×B 3.1650 11.4190** 0.4650 3.3640*

Fig.1

Effects of low temperature stress at booting stage on yield and its components of different panicle parts of high quality fragrant rice Different capital letters and lowercase letters indicate extremely significant difference and significant difference at 0.01 and 0.05 levels, respectively.“*”and“**”indicate significant difference (P < 0.05) and extremely significant difference (P < 0.01), respectively"

Table 2

The decrease of yield components in different parts of panicle of different aromatic rice under low temperature treatments %"

品种
Variety
穗部位
Spike part
每穗粒数Number of grains per spike 结实率Seed-setting rate 千粒重1000-grain weight
3d 6d 9d 3d 6d 9d 3d 6d 9d
绥粳4
Suijing 4
上部 18.15 26.76 39.62 0.19 8.13 42.51 1.08 9.80 12.30
中部 20.37 35.05 44.20 0.10 9.27 45.92 1.37 8.56 14.20
下部 25.70 41.23 51.11 1.44 15.43 43.95 0.46 8.38 19.59
垦稻08-169
Kendao 08-169
上部 14.45 22.85 31.16 2.01 3.59 26.98 6.43 7.72 16.63
中部 16.39 24.89 39.09 0.58 3.33 31.45 5.27 8.82 16.33
下部 19.89 21.53 38.52 0.37 6.26 29.22 3.96 9.33 11.75

Table 3

Correlation analysis between yield components and yield of different parts of panicle of high quality fragrant rice under low temperature stress at booting stage"

指标
Index
每穗粒数
Number of
grains
per spike
结实率
Seed-
setting
rate
千粒重
1000-
grain
weight
每穗粒数
Number of grains per spike
结实率
Seed-setting rate
千粒重
1000-grain weight
上部
Upper
中部
Middle
下部
Lower
上部
Upper
中部
Middle
下部
Lower
上部
Upper
中部
Middle
下部
Lower
产量Yield 0.97** 0.90** 0.85** 0.97** 0.96** 0.97** 0.88** 0.88** 0.92** 0.85** 0.90** 0.85**
每穗粒数Number of grains per spike 1.00 0.88** 0.87** 0.99** 0.99** 0.99** 0.79* 0.78* 0.84** 0.87** 0.91** 0.87**
结实率Seed-setting rate 1.00 0.79* 0.82** 0.79* 0.80** 1.00** 1.00** 1.00** 0.76* 0.81** 0.83**
千粒重1000-grain weight 1.00 0.87** 0.91** 0.81** 0.79* 0.77* 0.82** 0.97** 0.99** 0.96**

Fig.2

Response model of low temperature stress at booting stage on yield of high quality aromatic rice"

[1] 李玲. 水资源非农化对粮食生产的影响及应对策略研究. 泰安:山东农业大学, 2020.
[2] 徐春春, 纪龙, 陈中督, 等. 2022年我国水稻产业形势分析及2023年展望. 中国稻米, 2023, 29(2):1-4.
doi: 10.3969/j.issn.1006-8082.2023.02.001
[3] 徐春春, 纪龙, 李凤博, 等. 当前我国水稻产业发展形势与战略对策. 华中农业大学学报, 2022, 41(1):21-27.
[4] 曾勰婷, 张忠明, 王静香, 等. 中国粮食消费需求分析与展望. 农业展望, 2021, 17(7):104-114.
[5] Jia Y, Zou D, Wang J, et al. Effect of low water temperature at reproductive stage on yield and glutamate metabolism of rice (Oryza sativa L.) in China. Field Crops Research, 2015, 175:16-25.
doi: 10.1016/j.fcr.2015.01.004
[6] 郭丽颖, 耿艳秋, 金峰, 等. 寒地水稻低温冷害防御栽培技术研究进展. 作物杂志, 2017(4):7-14.
[7] 王艳华. 持续低温对沈阳地区水稻的影响及品种搭配决策研究. 沈阳:沈阳农业大学, 2013.
[8] 吴立, 霍治国, 姜燕, 等. 气候变暖背景下南方早稻春季低温灾害的发生趋势与风险. 生态学报, 2016, 36(5):1263-1271.
[9] 邓奎才, 邓元博, 刘晓航. 低温冷害对延边地区水稻产量的影响分析. 现代农业科技, 2017(19):197-198,200.
[10] 刘晓航, 马树庆, 赵晶, 等. 东北粳稻产量对孕穗期不同时段低温的反应. 中国农学通报, 2022, 38(7):91-98.
doi: 10.11924/j.issn.1000-6850.casb2021-0325
[11] Li Y F, Wang L M, Cao G L, et al. Comparison of cold tolerance at the booting stage for cold tolerant japonica rice germplasm under different cold stress. Journal of Plant Genetic Resources, 2010, 11(6):691-697.
doi: 10.13430/j.cnki.jpgr.2010.06.007
[12] 刘琳帅, 卞景阳, 孙兴荣, 等. 水稻低温冷害的研究进展. 江苏农业科学, 2022, 50(24):9-15.
[13] 耿立清, 王嘉宇, 陈温福. 孕穗—灌浆期低温对水稻穗部性状的影响. 华北农学报, 2009, 24(3):107-111.
doi: 10.7668/hbnxb.2009.03.024
[14] Koichi Y, Kei O, Seiya I, et al. Revision of the relationship between anther morphology and pollen sterility by cold stress at the booting stage in rice. Annals of Botany, 2021, 128(5):559-575.
doi: 10.1093/aob/mcab091 pmid: 34232290
[15] Thakur P, Kumar S, Malik J A, et al. Cold stress effects on reproductive development in grain crops: An overview. Environmental and Experimental Botany, 2010, 67(3):429-443.
doi: 10.1016/j.envexpbot.2009.09.004
[16] Ali I, Tang L, Dai J, et al. Responses of grain yield and yield related parameters to post-heading low-temperature stress in japonica rice. Plants, 2021, 10(7):1425.
doi: 10.3390/plants10071425
[17] 杨洛淼, 孙健, 赵宏伟, 等. 不同年份冷水胁迫下水稻抽穗期和产量性状的QTL分析. 中国农业科学, 2016, 49(18):3489- 3503.
doi: 10.3864/j.issn.0578-1752.2016.18.003
[18] 杨志奇, 杨春刚, 汤翠凤, 等. 中国粳稻地方品种孕穗期耐冷性评价及聚类分析. 植物遗传资源学报, 2008, 9(4):485-491,496.
[19] 金铭路, 杨春刚, 余腾琼, 等. 中国水稻微核心种质不同生育时期耐冷性鉴定及其相关分析. 植物遗传资源学报, 2009, 10 (4):540-546.
[20] 朱海霞, 王秋京, 闫平, 等. 孕穗抽穗期低温处理对黑龙江省主栽水稻品种结实率的影响. 中国农业气象, 2012, 33(2):304-309.
[21] Xu Y, Wang R, Wang Y, et al. A point mutation in LTT 1 enhances cold tolerance at the booting stage in rice. Plant,Cell and Environment, 2020, 43(4):992-1007.
doi: 10.1111/pce.v43.4
[22] 贺梅, 宋冬明, 黄少锋. 黑龙江省香型水稻育种研究现状与展望. 中国稻米, 2018, 24(5):45-47.
doi: 10.3969/j.issn.1006-8082.2018.05.009
[23] 赵凤民, 李修平, 薛菁芳, 等. 黑龙江省香稻资源遗传多样性分析. 分子植物育种, 2020, 18(12):4120-4127.
[24] 刘立超, 谢树鹏, 门龙楠, 等. 黑龙江粳稻品质育种现状及对策. 中国稻米, 2022, 28(4):19-22.
doi: 10.3969/j.issn.1006-8082.2022.04.004
[25] 刘晓航, 马树庆, 赵晶, 等. 东北粳稻产量对孕穗期不同时段低温的反应. 中国农学通报, 2022, 38(7):91-98.
doi: 10.11924/j.issn.1000-6850.casb2021-0325
[26] 任红茹, 荆培培, 胡宇翔, 等. 孕穗期低温对水稻生长及产量形成的影响. 中国稻米, 2017, 23(4):56-62.
doi: 10.3969/j.issn.1006-8082.2017.04.010
[27] 张盛楠. 孕穗期冷水胁迫对寒地粳稻抗逆生理及产量形成的影响. 哈尔滨:东北农业大学, 2020.
[28] 李健陵, 霍治国, 吴丽姬, 等. 孕穗期低温对水稻产量的影响及其生理机制. 中国水稻科学, 2014, 28(3):277-288.
[29] 王士强, 宋晓慧, 赵海红, 等. 孕穗期低温胁迫对寒地水稻产量和品质的影响. 农业现代化研究, 2016, 37(3):579-586.
[1] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Zhao Guangcai. Response of Nitrogen Accumulation and Translocation after Anthesis in Strong Gluten Wheat to Nitrogen Topdressing Period and Proportion [J]. Crops, 2023, 39(6): 114-120.
[2] Zhou Xu, He Xiaolei, Cao Liang, Li Duo, Fu Chenye, Zhang Mingcong, Zhang Yuxian, Wang Mengxue. Effects of Different Water Stress and Rehydration at Seedling Stage on Antioxidant Properties and Yield of Soybean [J]. Crops, 2023, 39(6): 135-142.
[3] Liu Xiwei, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Impacts Mechanism of Drought and Heat Stress in the Middle and Late Growing Period on Wheat Grain Yield Formation Process and Mitigation Measures [J]. Crops, 2023, 39(6): 17-25.
[4] Dong Haosheng, Wang Qi, Yan Peng, Xu Yanli, Zhang Wei, Lu Lin, Dong Zhiqiang. Effects of ECK on the Lodging Resistance and Yield of Foxtail Millet Stem [J]. Crops, 2023, 39(6): 181-189.
[5] Liang Zhongyu, Xue Jun, Zhang Guoqiang, Ming Bo, Shen Dongping, Fang Liang, Zhou Linli, Zhang Yuqin, Yang Hengshan, Wang Keru, Li Shaokun. Effects of Phosphorus Application Rate on Lodging Resistance of Maize under Integrated Water and Fertilizer [J]. Crops, 2023, 39(6): 190-194.
[6] Duan Junya, Zhao Yuanyuan, Wei Jianyu, Wang Dexun, Wang Zheng, Wang Tingting, Shi Hongzhi. Effects of Foliar Spraying Polyaspartic Acid on Growth, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2023, 39(6): 195-201.
[7] Xu Shihao, Zhao Chunbo, Huangfu Liyun, Fan Xintong, Chen Shanshan, Han Zhongcai, Han Yuzhu. Effects of Different Potassium Sources on Potassium Accumulation, Transport and Yield Components in Potato [J]. Crops, 2023, 39(6): 202-208.
[8] Hao Zhiyong, Yang Guangdong, Hu Zunyan, Li Jinghua, Sun Bangsheng, Chen Linqi. Effects of Different Fertilizers on Yield, Agronomic Characteristics and Quality of Early Maturing Sorghum [J]. Crops, 2023, 39(6): 218-223.
[9] Wang Zhenlong, Su Cuicui, Zhou Qi, Deng Chaochao, Zhou Yanfang. The Effects of Reducing Nitrogen Fertilizer and Applying Organic Fertilizer on the Yield, Quality, and Soil Quality of Helianthus tuberosus L. [J]. Crops, 2023, 39(5): 104-109.
[10] Liu Yan, Qu Hang, Xing Yuehua, Wang Xiaohui, Gong Liang. Effects of New Types of Nitrogen Fertilizer on Rice Growth, Nitrogen Use Efficiency and Economic Benefit [J]. Crops, 2023, 39(5): 110-116.
[11] Liu Qiuyuan, Li Meng, Gao Yangguang, Shi Mengyu, Wei Yunfei, Ji Xin, Li Li, Liu Yali, Wang Fujuan. Effects of Different Nitrogen Fertilization Patterns on Yield and Quality of Conventional Japonica Rice under Reduced Nitrogen [J]. Crops, 2023, 39(5): 131-137.
[12] Yang Mei, Yang Weijun, Gao Wencui, Jia Yonghong, Zhang Jinshan. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Dry Matter Transport, Agronomic Characteristics and Yield of Winter Wheat in Irrigation Area [J]. Crops, 2023, 39(5): 138-144.
[13] Zhang Rong, Chen Xiaowen, Lu Ping, You Yanrong, Zhou Delu, Li Deming. Effects of Different Mulching Modes on Soil Moisture, Temperature and Yield of Potato in Dry Land [J]. Crops, 2023, 39(5): 145-150.
[14] Wu Xueqin, Liu Kaiyu, Han Chunhua, Alimujiang·Kelaimu , Cui Yannan, Li Jiangyu, Ma Chunmei, Zhong Wenfan, Zhao Qiang. Effects of 14% Thiobenzene-Dioxalon on Defoliation Ripening, Yield and Quality of Cotton [J]. Crops, 2023, 39(5): 164-169.
[15] Guan Qinglin, Piao Shengyuan, Zhang Siwei, Wang Jun, Lei Yunkang, Zhong Qiu, Zhao Mingqin. Effects of Combined Application of Medium-Trace Elements on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism, Yield and Quality of Cigar Tobacco [J]. Crops, 2023, 39(5): 187-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!