Crops ›› 2024, Vol. 40 ›› Issue (4): 203-208.doi: 10.16035/j.issn.1001-7283.2024.04.026

Previous Articles     Next Articles

Effects of Different Cultivation Conditions on Cadmium Content of Grains and Main Characteristics in Rice

Li Hu(), Wu Zishuai, Liu Guanglin, Luo Qunchang, Chen Chuanhua(), Zhu Qinan   

  1. Rice Research Institute, Guangxi Academy of Agricultural Sciences / Guangxi Key Laboratory of Rice Genetics and Breeding / Guangxi Talent Highland of High Quality Rice Breeding Research, Nanning 530007, Guangxi, China
  • Received:2023-03-03 Revised:2023-05-04 Online:2024-08-15 Published:2024-08-14

Abstract:

In order to screen effective and low-cost cultivation measures for cadmium reduction, five treatments were set, including blank (A0), waterflooding (A1), zinc fertilizer + waterflooding (A2), lime + waterflooding (A3), and zinc fertilizer + lime + waterflooding (A4), using two sub-varieties of rice (V1, V2) with low cadmium as experimental materials. The effects of various measures on the agronomic traits and cadmium content of milled rice were analyzed. The results showed that except for excessive cadmium levels in V2 late rice A1 and A2 treatments, other cadmium reduction treatments had qualified cadmium content. The V1 material late rice A3 treatment had negative effects on the milled rice rate, effective panicle number, and yield. The V2 material late rice A3 treatment had negative effects on the aspect ratio and protein content. The A4 treatment had a negative effect on the chalky grain rate and chalkiness, while the negative effects of other treatments were not significant. Overall, when V1, V2 early rice and V1 late rice were treated with A1, V2 late rice was treated with A3, the cost was relatively low, and the cadmium content in polished rice did not exceed the standard. The impact on yield and rice quality indicators was relatively small, resulting in the best overall effect. After approval, V1 and V2 can be combined with supporting cadmium reduction cultivation techniques to promote and apply in moderately cadmium polluted rice fields in Guangxi.

Key words: Rice, Low accumulation of cadmium, Cadmium reduction measures, Cd content in milled rice, Agronomic traits

Fig.1

Cadmium content in milled rice under different cultivation conditions Different lowercase and capital letters indicate significant difference (P < 0.05) or extremely significant difference (P < 0.01) between treatments, respectively."

Table 1

Main indexes of rice quality of materials under different cultivation conditions"

材料
Material
季别
Season
处理
Treatment
糙米率
Brown rice
rate (%)
精米率
Milled rice
rate (%)
长宽比
Length-
width ratio
粒长
Grain
length (cm)
垩白粒率
Chalkiness
rate (%)
垩白度
Chalkiness
degree (%)
透明度
Transparency
蛋白质含量
Protein
content (%)
直链淀粉含量
Amylose
content (%)
V1 早稻 A0 79.44a 65.67a 2.24a 5.24b 20.00a 6.18a 1.75a 8.28ab 21.13a
A1 80.54a 66.28a 2.24a 5.27ab 21.00a 7.37a 2.00a 8.23b 21.18a
A2 79.97a 66.81a 2.25a 5.25ab 23.75a 8.62a 1.75a 8.55a 21.08a
A3 79.85a 66.03a 2.24a 5.29a 20.25a 6.84a 1.50a 8.25ab 20.58a
A4 80.06a 66.50a 2.24a 5.28ab 19.50a 6.60a 1.75a 8.38ab 20.85a
晚稻 A0 82.86a 70.35a 2.19a 5.08a 9.69ab 3.04a 1.00a 8.35aA 15.03ab
A1 82.10a 69.29ab 2.20a 5.14a 10.45ab 3.38a 1.00a 8.15bcAB 16.65a
A2 82.77a 69.18ab 2.15a 5.02a 8.32b 2.52a 1.00a 8.23abAB 15.73ab
A3 82.84a 68.42b 2.14a 5.03a 10.29ab 2.80a 1.00a 8.03cB 14.25b
A4 82.39a 69.92ab 2.16a 5.05a 10.48a 3.15a 1.00a 8.15bcAB 16.15ab
V2 早稻 A0 80.31a 66.70a 3.33a 6.06a 7.75a 1.72a 1.00a 7.73a 14.18abcAB
A1 79.89a 63.78a 3.35a 6.16a 5.50ab 1.23a 1.25a 7.65a 14.03bcAB
A2 80.34a 64.61a 3.39a 6.13a 6.50ab 1.28a 1.00a 7.83a 13.58cB
A3 79.83a 64.56a 3.43a 6.23a 5.50ab 1.05a 1.00a 7.65a 14.68abA
A4 80.14a 64.90a 3.44a 6.25a 4.00b 0.88a 1.00a 7.80a 14.80aA
晚稻 A0 79.20bB 67.84a 3.56aA 6.15aA 2.49bB 0.46b 1.00a 8.93aA 10.85ab
A1 81.22aA 67.68a 3.39bB 5.80bB 3.56abAB 0.69ab 1.00a 8.78aAB 10.18b
A2 81.03aA 67.08a 3.43bAB 5.91bAB 3.78abAB 0.80ab 1.00a 8.85aA 11.33ab
A3 80.46abAB 65.96a 3.41bAB 5.98abAB 3.88abAB 0.78ab 1.00a 8.48bB 12.30a
A4 80.30abAB 67.68a 3.55aA 6.16aA 4.99aA 0.96a 1.00a 8.70abAB 11.25ab

Table 2

Performance of agronomic traits such as yield"

材料
Material
季别
Season
处理
Treatment
千粒重
1000-grain
weight (g)
有效穗数
Effective panicle
number
穗粒数
Grain numbers
per panicle
结实率
Seed-setting
rate (%)
株高
Plant height
(cm)
穗长
Panicle length
(cm)
产量
Yield
(kg/hm2)
V1 早稻 A0 22.38abAB 4.85a 216.09a 75.35ab 121.00a 23.82a 6670.17a
A1 22.37abAB 5.13a 227.64a 74.74ab 123.48a 23.44a 6620.65a
A2 22.38abAB 4.90a 246.51a 72.30b 123.55a 23.71a 6536.61a
A3 21.87bB 4.30a 246.06a 75.97ab 122.38a 23.74a 6307.02a
A4 22.89aA 5.28a 248.69a 79.79a 123.38a 24.07a 6227.49a
晚稻 A0 23.13a 3.93a 285.69ab 80.34ab 105.28abAB 23.17a 6330.13a
A1 22.90a 3.75ab 264.01b 74.85b 107.40aA 23.09a 5938.03ab
A2 23.30a 3.95a 294.43ab 83.60a 106.90aAB 23.07a 6260.65a
A3 23.22a 3.30b 284.94ab 84.03a 103.73bB 22.61a 5623.05b
A4 23.02a 3.65ab 322.84a 79.98ab 106.54aAB 23.29a 5908.76ab
V2 早稻 A0 20.43a 7.40abAB 140.28bB 89.20a 134.34ab 25.87ab 6224.49b
A1 20.21a 7.98aA 141.56bB 88.40a 135.13a 25.27b 7006.30a
A2 19.97a 6.83bAB 164.85aAB 91.21a 134.08ab 26.49ab 6515.61ab
A3 20.18a 6.48bB 160.75abAB 88.06a 132.90b 26.41ab 6200.48b
A4 20.25a 7.48abAB 174.14aA 90.07a 133.43ab 26.55a 6665.67ab
晚稻 A0 17.93bcAB 6.90ab 161.65a 69.44ab 108.70a 24.73a 4042.62
A1 17.63bcB 7.20a 165.19a 65.18b 107.38a 24.58a 4228.99
A2 17.58cB 5.73b 182.01a 70.26ab 108.34a 24.53a 4509.45
A3 18.93aA 5.55b 156.85a 74.09a 106.75a 23.75a 4290.82
A4 18.49abAB 6.10ab 171.67a 66.06b 106.74a 24.05a 3983.04
[1] 朱凰榕, 陈亚刚, 李媛媛, 等. 改性膨润土钝化土壤Cd对不同水稻品种安全生产研究. 安徽农业科学, 2015, 43(16):96-99,123.
[2] 邓齐玉, 赵银军, 林清, 等. 广西重金属镉的区域性分布特征与土壤污染状况评价. 环境工程, 2019, 37(1):164-171,92.
[3] Sui F Q, Chang J D, Tang Z, et al. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize. Plant Soil, 2018, 433:377-389.
[4] 陈桂芬, 雷静, 黄雁飞, 等. 广西稻田镉污染状况及硅对稻米镉的消减作用. 南方农业学报, 2015, 46(5):772-776.
[5] 林华, 张学洪, 梁延鹏, 等. 复合污染下Cu、Cr、Ni和Cd在水稻植株中的富集特征. 生态环境学报, 2014, 23(12):1991-1995.
[6] 邓新, 温璐璐, 迟鑫姝. 镉对人体健康危害及防治研究进展. 中国医疗前沿, 2010, 5(10):4-5.
[7] 胡婉茵, 王寅, 吴殿星, 等. 低镉水稻研究进展. 核农学报, 2021, 35(1):93-102.
doi: 10.11869/j.issn.100-8551.2021.01.0093
[8] 张玉烛, 方宝华, 滕振宁, 等. 应急性镉低积累水稻品种筛选与验证. 湖南农业科学, 2017(12):19-25.
[9] 冯爱煊, 贺红周, 李娜, 等. 基于多目标元素的重金属低累积水稻品种筛选及其吸收转运特征. 农业资源与环境学报, 2020, 37(6):988-1000.
[10] 龚浩如, 邓述东, 陶曙华, 等. 湘潭市镉低积累水稻品种筛选试验. 湖南农业科学, 2016(12):18-20.
[11] 杨小粉, 吴勇俊, 张玉盛, 等. 水分管理对水稻镉吸收的影响. 中国稻米, 2019, 25(4):34-37.
doi: 10.3969/j.issn.1006-8082.2019.04.008
[12] 刘大锷, 郭明选, 高汉清, 等. 施用生石灰对镉污染酸性土壤中水稻镉积累的影响. 湖南农业科学, 2016(12):24-26.
[13] 生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准:GB 15618-2018. 北京: 中国标准出版社, 2018.
[14] 国家卫生和计划生育委员会. 食品安全国家标准食品中镉的测定:GB 5009.15-2014. 北京: 中国标准出版社, 2014.
[15] 徐燕玲, 陈能场, 徐胜光, 等. 低镉累积水稻品种的筛选方法研究——品种与类型. 农业环境科学学报, 2009, 28(7):1346-1352.
[16] 仲维功, 杨杰, 陈志德, 等. 水稻品种及其器官对土壤重金属元素Pb、Cd、Hg、As积累的差异. 江苏农业学报, 2006, 22 (4):331-338.
[17] 邓伟, 张玉烛, 敖和军, 等. 不同镉积累型水稻品种苗期镉积累及转运变化特征. 中国稻米, 2018, 24(4):86-90.
doi: 10.3969/j.issn.1006-8082.2018.04.021
[18] Duan G L, Shao G S, Tang Z, et al. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars. Rice, 2017, 10(1):9.
doi: 10.1186/s12284-017-0149-2 pmid: 28353179
[19] 李虎, 吴子帅, 陈传华, 等. 镉低积累水稻品种筛选及其在镉超标稻田的表现评价. 南方农业学报, 2022, 53(1):96-103.
[20] 滕振宁, 张玉烛, 方宝华, 等. 秩次分析法在低镉水稻品种筛选中的应用. 中国稻米, 2017, 23(2):21-26.
doi: 10.3969/j.issn.1006-8082.2017.02.006
[21] 陈彩艳, 唐文帮. 筛选和培育镉低积累水稻品种的进展和问题探讨. 农业现代化研究, 2018, 39(6):1044-1051.
[22] Ye X X, Li H Y, Ma Y B, et al. The bioaccumulation of Cd in rice grains in paddy soils as affected and predicted by soil properties. Journal of Soils and Sediments, 2014, 14(8):1407-1416.
[23] Honma T, Ohba H, Kaneko-Kadokura A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environmental Science and Technology, 2016, 50(8):4178-4185.
doi: 10.1021/acs.est.5b05424 pmid: 26999020
[24] 张丽娜, 宗良纲, 付世景, 等. 水分管理方式对水稻在Cd污染土壤上生长及其吸收Cd的影响. 安全与环境学报, 2006, 6(5):49-52.
[25] Gao M, Zhou J, Liu H, et al. Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Science of the Total Environment, 2018, 631:1100-1108.
[26] Bian R J, Chen D, Liu X Y, et al. Biochar soil amendment as a solution to prevent Cd-tainted rice from China: Results from a cross-site field experiment. Ecological Engineering, 2013, 58:378-383.
[27] 胡婉茵, 王寅, 吴殿星, 等. 低镉水稻研究进展. 核农学报, 2021, 35(1):93-102.
doi: 10.11869/j.issn.100-8551.2021.01.0093
[28] Nascimento A M, Assis F A, Moraes J C, et al. Silicon application promotes rice growth and negatively affects development of Spodoptera frugiperda (JE Smith). Journal of Applied Entomology, 2018, 142(1/2):241-249.
[29] Zeng F R, Ali S, Zhang H, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 2011, 159(1):84-91.
doi: S0269-7491(10)00424-0 pmid: 20952112
[30] 孙丽娟, 秦秦, 宋科, 等. 镉污染农田土壤修复技术及安全利用方法研究进展. 生态环境学报, 2018, 27(7):1377-1386.
[1] Ou Yingzhuo, Zhao Qing, Gu Huaiying, Zhou Yuyang, Liu Changhua, Meng Lijun. Application Status of Chlorate in Nitrate Nitrogen Research of Rice [J]. Crops, 2024, 40(4): 1-7.
[2] Ma Yanhua, Sun Dequan, Li Suiyan, Lin Hong, Pan Liyan, Li Donglin, Fan Jinsheng, Wu Jianzhong, Yang Guowei. Comprehensive Evaluation of Main Agronomic Traits and Screening of Excellent Germplasms of Maize Landraces in Heilongjiang Province [J]. Crops, 2024, 40(4): 103-112.
[3] Yuan Shuai, He Mingjuan, Cui Can, Han Yu, Yu Peng, Yi Zhenxie. Effects of Different Base Application Amounts of Calcium- Magnesium Hydrotalcite in Early Rice on Yield and Rice Quality of Double-Cropping Rice in Southern Hunan [J]. Crops, 2024, 40(4): 113-120.
[4] Zhou Zhou, Shen Xinya, Wang Jun, Liu Lijun. Effects of Combination of Controlled-Release Fertilizer and Common Urea on Yield, Nitrogen Use Efficiency and Grain Quality in Rice [J]. Crops, 2024, 40(4): 180-187.
[5] Li Chunhua, Wu Han, Jiayangduola , Wang Chunlong, Wang Yanqing, Ren Changzhong. Effects of Sowing Date on Agronomic Traits and Yield of Common Buckwheat Varieties (Lines) [J]. Crops, 2024, 40(4): 216-222.
[6] Song Quanhao, Cao Yanwei, Jin Yan, Xiao Yonggui, Song Jiajing, Zhao Lishang, Chen Jie, Bai Dong, Zhu Tongquan. Comprehensive Evaluation of 50 Wheat Germplasm Resources Derived from ICARDA [J]. Crops, 2024, 40(4): 54-61.
[7] Gu Huaiying, Hu Shiqin, Zhao Qing, Liu Changhua, Meng Lijun. The Progress on Enhancing Salt Tolerance of Rice by Rhizosphere Microorganisms [J]. Crops, 2024, 40(4): 8-13.
[8] Xie Huifang, Wei Menghan, Song Zhongqiang, Liu Jinrong, Wang Suying, Xing Lu, Wang Shujun, Liu Haiping, Jia Xiaoping, Song Hui. Analyzing of the Mixed Inheritance Model of Major Gene Plus Polygene of Main Traits in Foxtail Millet [J]. Crops, 2024, 40(4): 82-89.
[9] Chen Luo, Zhu Wen, Li Wenhui, Zhao Junliang, Zhou Lingyan, Yang Wu. Advances in Research and Application of Rice Bacterial Blight Resistance Genes [J]. Crops, 2024, 40(3): 1-7.
[10] Jiang Min, He Aibin, Sun Huijuan, Man Jianguo, Nie Lixiao. Effects of Nitrogen Management on Growth and Development, Soil Physical and Chemical Properties of Late-Season Rice under Different Straw Retention Treatments of Early-Season Rice in Direct Seeding Mode of Double-Season Rice [J]. Crops, 2024, 40(3): 100-108.
[11] Bao Xuelian, Wen Feng, Jin Xiaoguang, Hu Ruimei, Huang Qianjing, Zhang Guihua, Qi Jinquan, Bai Yingzhe, Wuyuehan , Baiyilatu . Adaptability Analysis of Different Millet Varieties in the Main Grain-Producing Areas of Eastern Inner Mongolia [J]. Crops, 2024, 40(3): 201-206.
[12] Quan Chengzhe, Li Shufang, Li Henan, Yu Wei, Jin Jinghua. Genetic Diversity Study of Phenotypic Traits of 73 Rice Varieties by Approved in Jinlin Province [J]. Crops, 2024, 40(3): 64-75.
[13] Wang Han, Zheng Dechao, Tian Qinqin, Wu Xiaojing, Zhou Wenxin, Yi Zhenxie. Effects of Harvest Time on Yield and Cadmium Accumulation and Distribution Characteristics of Early Rice [J]. Crops, 2024, 40(2): 105-112.
[14] Xiao Min, Guo Lang, Cui Can, Cheng Zhouqi, Liu Yuwu, Zhuo Le, Wu Si, Yi Zhenxie. Effects of Phosphate Fertilizer Management on Yield Components and Nutrient Uptake and Utilization in Mechanical Transplanting Double-Cropping Rice [J]. Crops, 2024, 40(2): 178-188.
[15] Liu Fanchao, Fang Shumei, Wang Qingyan, Wang Hanxin, Niu Juanjuan, Liang Xilong. Effects of Different Concentrations of Exogenous Amino Acids on Growth and Related Physiological Indicators of Rice Seedlings [J]. Crops, 2024, 40(2): 71-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!