Crops ›› 2024, Vol. 40 ›› Issue (2): 105-112.doi: 10.16035/j.issn.1001-7283.2024.02.013

Previous Articles     Next Articles

Effects of Harvest Time on Yield and Cadmium Accumulation and Distribution Characteristics of Early Rice

Wang Han1(), Zheng Dechao1, Tian Qinqin1, Wu Xiaojing2, Zhou Wenxin1(), Yi Zhenxie1()   

  1. 1College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
    2Chenzhou Crop Seed Storage and Technology Extension Station, Chenzhou 423000, Hunan, China
  • Received:2023-01-30 Revised:2023-02-13 Online:2024-04-15 Published:2024-04-15

Abstract:

In order to explore the suitable harvest time of early rice in the cadmium-polluted rice area of southern Hunan, a field experiment was conducted in cadmium-polluted rice field of Chenzhou, Hunan province from 2021 to 2022 using Xiangzaoxian 45, Luliangyou 996 and Zhuliangyou 4026 as materials to study the effects of harvest time (18, 21, 24, 27, 30 days after full heading) on the yield and cadmium (Cd) accumulation and distribution characteristics of early rice. The results showed that the harvest time had no significant effect on the number of effective panicles and grains per panicle of rice, but the seed-setting rate, 1000-grain weight and yield increased with the delay of harvest time. There was no significant difference between the treatments of harvesting at 27 and 30 days after full heading, but they were significantly higher than those of the other three treatments. With the delay of harvest time, the Cd content, Cd accumulation and Cd distribution coefficient in leaves and chaffs of all varieties showed a downward trend, while the Cd content, Cd accumulation, Cd distribution coefficient in stems and brown rice and the plant total Cd accumulation showed an upward trend. Except Luliangyou 996, the Cd content and accumulation in brown rice of treatmentof harvesting at 30 days after full heading were significantly higher than other treatments. In the middle and late stage of rice filling (18-30 days after full heading), the Cd in grain mainly came from soil absorption and transport of leaves and chaffs. The Cd content in brown rice of early rice varied significantly among varieties, and the Cd content in brown rice of each treatment of Luliangyou 996 exceeded the national standard (0.2 mg/kg). It can be seen that delaying the harvest time is beneficial to improve the yield of early rice, but the Cd content of grains will also increase. Comprehensively considering the yield and the Cd content of brown rice, the suitable harvest time for early rice in the Cd-polluted rice area in southern Hunan is 27 days after full heading.

Key words: Early rice, Harvest time, Yield, Cadmium content

Table 1

Yield and its components of early rice under different harvest times"

年份
Year
品种
Variety
处理
Treatment
有效穗数
Productive panicle
number (×104/hm2)
穗粒数
Grain number
per panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
理论产量
Theoretical
yield (t/hm2)
实际产量
Actual yield
(t/hm2)
2021 湘早籼45号 308.03a 96.95a 58.57d 23.02b 4.02d 3.76d
312.32a 96.47a 64.15c 23.23ab 4.49c 4.25c
311.85a 96.18a 69.10b 23.57ab 4.89b 4.63b
309.81a 98.11a 76.75a 23.71ab 5.53a 5.25a
310.12a 98.37a 77.32a 23.82a 5.62a 5.38a
陆两优996 289.75a 96.58a 46.74d 27.76b 3.63d 3.44d
292.75a 93.31a 61.58c 27.63b 4.61c 4.46c
303.00a 94.46a 66.77b 28.05b 5.12b 4.88b
292.75a 96.44a 69.49ab 28.61a 5.62ab 5.35ab
293.00a 95.78a 73.08a 28.65a 5.88a 5.53a
2022 湘早籼45号 324.58a 95.25a 55.01c 23.36b 3.97c 3.72c
320.75a 94.82a 58.98bc 23.90ab 4.29c 4.02c
320.33a 93.03a 66.12ab 24.10ab 4.75b 4.58b
322.00a 95.11a 68.67a 24.10ab 5.05ab 4.88a
318.25a 93.38a 73.33a 24.22a 5.25a 5.03a
株两优4026 307.25a 118.43a 62.58d 26.33c 6.00c 5.78c
306.75a 117.08a 67.48c 26.46bc 6.41bc 6.23b
305.75a 116.77a 72.26b 26.59abc 6.50b 6.28b
310.33a 117.13a 75.50ab 26.88ab 7.38a 7.06a
312.50a 118.84a 77.58a 26.99a 7.51a 7.26a

Table 2

Dry matter weight of different organs of early rice under different harvest times t/hm2"

年份Year 品种Variety 处理Treatment 根Root 茎Culm 叶Leaf 谷壳Chaff 糙米Brown rice
2021 湘早籼45号 0.76a 3.36a 1.49a 0.82a 3.20d
0.71a 3.26ab 1.36ab 0.87a 3.62c
0.70a 3.23ab 1.22ab 0.86a 4.03b
0.69a 3.22ab 1.22ab 0.83a 4.70a
0.64a 3.14b 1.09b 0.85a 4.77a
陆两优996 1.08a 4.09a 1.72a 1.09a 2.54d
0.88b 3.72a 1.59a 1.12a 3.49c
0.86b 3.72a 1.55a 1.14a 3.98bc
0.85b 3.59a 1.47a 1.14a 4.48ab
0.84b 3.67a 1.43a 1.17a 4.71a
2022 湘早籼45号 0.62a 4.16a 1.58a 0.87a 3.10c
0.61a 3.70ab 1.48a 0.85a 3.44bc
0.58a 3.70ab 1.40a 0.84a 3.91b
0.54a 3.61b 1.39a 0.88a 4.17ab
0.52a 3.27c 1.37a 0.91a 4.34a
株两优4026 0.73a 4.52a 1.61a 1.48a 4.52c
0.72a 4.51a 1.43b 1.45a 4.96bc
0.71a 4.50a 1.24c 1.47a 5.03b
0.66a 4.32a 1.12c 1.46a 5.92a
0.65a 4.30a 1.10c 1.50a 6.01a

Table 3

Cd content of different organs of early rice under different harvest times mg/kg"

年份Year 品种Variety 处理Treatment 根Root 茎Culm 叶Leaf 谷壳Chaff 糙米Brown rice
2021 湘早籼45号 2.183b 0.456b 0.552a 0.272a 0.090c
2.369b 0.523b 0.481a 0.251a 0.095c
2.331b 0.598ab 0.473a 0.230ab 0.138b
2.357b 0.691a 0.373b 0.200ab 0.148b
2.525a 0.729a 0.297b 0.176b 0.182a
陆两优996 2.256b 1.132c 0.890a 0.504a 0.291b
2.423ab 1.359b 0.784b 0.481a 0.310ab
2.618a 1.378b 0.740b 0.422b 0.323ab
2.648a 1.611a 0.707b 0.417b 0.324ab
2.674a 1.656a 0.613c 0.385b 0.346a
2022 湘早籼45号 2.508a 0.444b 0.415a 0.300a 0.075b
2.585a 0.547b 0.411a 0.275a 0.084b
2.618a 0.554b 0.378a 0.251ab 0.099b
2.684a 0.603a 0.321b 0.208b 0.102b
2.718a 0.675a 0.318b 0.182b 0.135a
株两优4026 2.256b 0.564b 0.356a 0.255a 0.094c
2.423b 0.583b 0.330a 0.246a 0.098c
2.548a 0.607a 0.332a 0.241a 0.110c
2.574a 0.611a 0.324ab 0.234a 0.140b
2.618a 0.620a 0.311b 0.221a 0.188a

Table 4

Cd accumulation amount of different organs of early rice under different harvest times mg/hm2"

年份Year 品种Variety 处理Treatment 根Root 茎Culm 叶Leaf 谷壳Chaff 糙米Brown rice 合计Total
2021 湘早籼45号 1659.10a 1533.51b 822.17a 222.83a 266.05d 4503.66c
1682.18a 1706.43b 653.64a 218.07a 321.90d 4582.22c
1631.63a 1932.01ab 576.87a 198.05ab 520.06c 4858.62b
1626.28a 2224.67a 454.75b 166.00ab 653.55b 5125.25ab
1616.09a 2289.39a 323.52b 149.88b 822.20a 5201.08a
陆两优996 2436.52a 4629.13c 1531.61a 549.11a 682.71d 9829.08c
2132.64a 5057.13b 1246.53b 538.21a 1034.48c 10 008.99bc
2251.24a 5126.10b 1146.72b 481.02b 1206.69b 10 211.77b
2250.92a 5785.01a 1039.23b 474.85b 1365.86ab 10 915.87a
2246.12a 6078.78a 876.29c 450.96b 1508.45a 11 160.60a
2022 湘早籼45号 1554.89a 1845.04b 655.57a 260.86a 214.66c 4531.02b
1576.65a 2025.56b 608.57a 233.70b 264.92c 4709.40ab
1518.32a 2049.76b 529.51b 211.11b 368.64b 4677.34ab
1449.25a 2177.26a 446.00b 183.43bc 407.63b 4663.57ab
1413.11a 2205.98a 435.71b 165.65c 554.92a 4775.37a
株两优4026 1646.91a 2549.21a 572.86a 377.40a 405.28c 5551.66b
1744.88a 2628.39a 471.50ab 356.70a 463.20c 5664.67b
1809.18a 2707.04a 411.45b 354.27a 527.77b 5809.71ab
1698.81a 2638.74a 362.77b 341.64a 782.01b 5823.97ab
1701.52a 2668.02a 341.63b 331.50a 1080.46a 6123.13a

Fig.1

Cd distribution of different organs of early rice under different harvest times"

[1] Sui F Q, Chang J D, Tang Z, et al. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize. Plant and Soil, 2018, 433(1/2):377-389.
doi: 10.1007/s11104-018-3849-5
[2] Chen H P, Tang Z, Wang P, et al. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice. Environmental Pollution, 2018, 238:482-490.
doi: S0269-7491(18)30418-4 pmid: 29602104
[3] Mu T T, Wu T Z, Zhou T, et al. Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China. Science of the Total Environment, 2019, 677:373-381.
doi: 10.1016/j.scitotenv.2019.04.337
[4] 汪鹏, 王静, 陈宏坪, 等. 我国稻田系统镉污染风险与阻控. 农业环境科学学报, 2018, 37(7):1409-1417.
[5] 蔡秋玲, 林大松, 王果, 等. 不同类型水稻镉富集与转运能力的差异分析. 农业环境科学学报, 2016, 35(6):1028-1033.
[6] 封文利, 郭朝晖, 史磊, 等. 控源及改良措施对稻田土壤和水稻镉累积的影响. 环境科学, 2018, 39(1):399-405.
[7] 魏晓, 张鹏博, 赵丹丹, 等. 水稻土施硅对土壤―水稻系统中镉的降低效果. 生态学报, 2018, 38(5):1600-1606.
[8] 纪雄辉, 梁永超, 鲁艳红, 等. 污染稻田水分管理对水稻吸收积累镉的影响及其作用机理. 生态学报, 2007, 27(9):3930-3939.
[9] 苏雨婷, 赵英杰, 谷子寒, 等. 灌溉方式对土壤有效镉含量与双季稻产量形成及镉累积分配的影响. 作物研究, 2018, 32 (3):180-187.
[10] 常同举, 崔孝强, 阮震, 等. 长期不同耕作方式对紫色水稻土重金属含量及有效性的影响. 环境科学, 2014, 35(6):2381-2391.
[11] 汤文光, 肖小平, 唐海明, 等. 长期不同耕作与秸秆还田对土壤养分库容及重金属Cd的影响. 应用生态学报, 2015, 26(1):168-176.
[12] 张宁. 气候变化或致全球粮食危机. 生态经济, 2021, 37(8):5-8.
[13] 马中涛, 马会珍, 崔文培, 等. 成熟度对优良食味水稻南粳9108产量、品质的影响. 江苏农业学报, 2020, 36(6):1353-1360.
[14] 李文敏, 李萍, 崔晶, 等. 收获期对粳稻食味理化特性的影响. 天津农业科学, 2020, 26(10):25-30.
[15] 成臣, 雷凯, 王盛亮, 等. 不同断水及收获期对南方优质晚粳稻产量和品质的影响. 作物研究, 2020, 34(1):1-7.
[16] 帅泽宇, 谷子寒, 王元元, 等. 土壤耕作方式对双季稻产量构成与穗镉积累的影响. 水土保持学报, 2019, 33(3):348-357.
[17] 蒋艳方, 陈基旺, 崔璨, 等. 杂交稻头季与再生季镉积累分配特性差异研究. 中国水稻科学, 2022, 36(1):55-64.
doi: 10.16819/j.1001-7216.2022.201108
[18] 李坤权, 刘建国, 陆小龙, 等. 水稻不同品种对镉吸收及分配的差异. 农业环境科学学报, 2003(5):529-532.
[19] 王宇豪, 杨力, 康愉晨, 等. 镉污染大田条件下不同品种水稻镉积累的特征及影响因素. 环境科学, 2021, 42(11):5545-5553.
[20] 张标金, 罗林广, 魏益华, 等. 不同基因型水稻镉积累动态差异分析. 中国农学通报, 2015, 31(9):25-30.
doi: 10.11924/j.issn.1000-6850.2014-2566
[21] 贺慧, 陈灿, 郑华斌, 等. 不同基因型水稻镉吸收差异及镉对水稻的影响研究进展. 作物研究, 2014, 28(2):211-215.
[22] 王丽妍, 杨成林. 不同收获期对寒地水稻产量和品质的影响. 北方水稻, 2018, 48(2):4-6,11.
[23] 萧长亮, 王安东, 王士强, 等. 不同收获期对寒地水稻产量和品质的影响. 黑龙江农业科学, 2018(12):7-10.
[24] 林伟, 柴楠, 郑涛, 等. 寒地水稻不同收获期对产量的影响. 现代化农业, 2017(2):30-31.
[25] 张国平, 陈仕龙, 颜迅平, 等. 优质稻最佳收获期试验初报. 贵州农业科学, 2007(1):68,65.
[26] 王凯荣, 龚惠群. 两种基因型水稻对环境镉吸收与再分配差异性比较研究. 农业环境保护, 1996(4):145-149,176,193.
[27] 吴启堂, 陈卢, 王广寿. 水稻不同品种对Cd吸收累积的差异和机理研究. 生态学报, 1999, 19(1):106-109.
[28] 喻华, 上官宇先, 涂仕华, 等. 水稻籽粒中镉的来源. 中国农业科学, 2018, 51(10):1940-1947.
doi: 10.3864/j.issn.0578-1752.2018.10.013
[1] Sun Tong, Yang Yushuang, Ma Ruiqi, Zhu Yingjie, Chang Xuhong, Dong Zhiqiang, Zhao Guangcai. Effects of PASP-KT-NAA and Ethylene-Chlormequat-Potassium on the Lodging Resistance, Yield, and Quality of Wheat [J]. Crops, 2024, 40(2): 113-121.
[2] Sun Yueying, Liu Jinghui, Mi Junzhen, Zhao Baoping, Li Yinghao, Zhu Shanshan. Study on the Growth-Promoting Effect of Lactic Acid Bacteria Compound Preparation on Oat [J]. Crops, 2024, 40(2): 122-128.
[3] Xu Zheli, Zhu Weiqi, Wang Litao, Shi Feng, Wei Zhiying, Wang Lina, Qiu Hongwei, Zhang Xiaoying, Li Huili. Effects of Irrigation and Foliar Nitrogen Application on Yield, Quality and Photosynthetic Characteristics of Late Sowing Wheat [J]. Crops, 2024, 40(2): 139-147.
[4] Xiao Min, Guo Lang, Cui Can, Cheng Zhouqi, Liu Yuwu, Zhuo Le, Wu Si, Yi Zhenxie. Effects of Phosphate Fertilizer Management on Yield Components and Nutrient Uptake and Utilization in Mechanical Transplanting Double-Cropping Rice [J]. Crops, 2024, 40(2): 178-188.
[5] Xie Mengfan, Jia Haijiang, Qu Yuankai, Nong Shiying, Li Junlin, Wang Jie, Liu Liwei, Yan Huifeng. Effects of Planting Density and Nitrogen Fertilizer Application Rate on Leaf Development and Yield of Flue-Cured Tobacco in Baise Tobacco Region [J]. Crops, 2024, 40(2): 189-197.
[6] Wang Huaiping, Yang Mingda, Zhang Suyu, Li Shuai, Guan Xiaokang, Wang Tongchao. Effects of Different Water-Saving Irrigation Modes on Growth, Yield, and Water Utilization of Summer Maize [J]. Crops, 2024, 40(2): 206-212.
[7] Zhang Lei, Dong Kongjun, He Jihong, Ren Ruiyu, Liu Tianpeng, Yang Tianyu. Study on the Difference of Nitrogen and Phosphorus Uptake of Different Genotypes of Proso Millet (Panicum miliaceum L.) Varieties [J]. Crops, 2024, 40(2): 228-233.
[8] Hu Haochi, Wang Fugui, Zhu Kongyan, Hu Shuping, Wang Meng, Wang Zhigang, Sun Jiying, Yu Xiaofang, Bao Haizhu, Gao Julin. Effects of Straw Returning Years and Phosphorus Application on Root Growth and Yield of Maize [J]. Crops, 2024, 40(2): 80-88.
[9] Qin Birong, You Saiya, Chen Shurong, Zhu Lianfeng, Kong Yali, Zhu Chunquan, Tian Wenhao, Zhang Junhua, Jin Qianyu, Cao Xiaochuang, Liu Li. Effects of the Different Nitrogen Levels on Yield, Nitrogen Utilization Efficiency and the Nitrogen Balance of Double-Cropping Rice in Paddy Field [J]. Crops, 2024, 40(2): 89-96.
[10] Luo Xiaoying, Fang Yanfei, Hu Dongping, Tang Jianghua, Xu Wenxiu, Wang Huaigang. Effects of Sowing Methods and Sowing Rates on Soil Water Use and Yield of Dryland Wheat in Arid Region [J]. Crops, 2024, 40(2): 97-104.
[11] Ji Ping, Liu Jinlong, Liu Hao, Kuang Jiali, Ye Shihe, Long Sha, Yang Hongtao, Peng Bo, Xu Chen, Liu Xiaolong. Effects of Heat Stress on Yield Components and Quality in Different Rice Varieties during Heading Stage [J]. Crops, 2024, 40(1): 117-125.
[12] Zhou Zhenlei, Liu Jianming, Cao Dong, Liu Baolong, Wang Dongxia, Zhang Huaigang. Comparison of Grass Yield, Agronomic Traits and Forage Quality of Different Oat Varieties [J]. Crops, 2024, 40(1): 132-140.
[13] Xiong Xin, Deng Jun, Shang Liyan, Sheng Tian, Ye Jiayu, Liu Zichen, Huang Liying, Zhang Yunbo. Effects of Nitrogen and Potassium Fertilizer Interaction on Yield and Radiation Use Efficiency of Hybrid Rice [J]. Crops, 2024, 40(1): 166-173.
[14] Shao Meihong, Zhu Defeng, Cheng Siming, Cheng Chu, Xu Qunying, Hu Chaoshui. Study on Seedling Quality and Yield of Machine Transplanting Early Rice with the Seedling Raising of Overlayed-Tray Emergence [J]. Crops, 2024, 40(1): 229-232.
[15] Xie Keran, Gao Ti, Cui Kehui. Research Progress of Potassium Fertilizer Controlling Rice Yield under High Temperature [J]. Crops, 2024, 40(1): 8-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!