Crops ›› 2024, Vol. 40 ›› Issue (6): 103-112.doi: 10.16035/j.issn.1001-7283.2024.06.014

Previous Articles     Next Articles

Effects of Different Farming Patterns on the Physiology and Structure of Maize Leaves

Cheng Shengyu(), Yang Caihong(), Cui Wenqiang, Jiang Xiaomin   

  1. Forestry College of Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2023-10-26 Revised:2024-03-01 Online:2024-12-15 Published:2024-12-05

Abstract:

To explore the influence of farming patterns on the physiology and structure of maize leaves in Hexi Irrigation Agricultural Region, this experiment set no-tillage with stubble retention (NT) and conventional tillage (CT), wheat-maize intercropping (W/M), winter-rape and maize rotation after wheat harvesting (W-G→M), wheat-maize rotation (W→M), maize leaf physiology, structure and yield changes of the six different treatments were studied. The results showed that the soluble sugar contents of maize under NT mode were higher than those in CT mode in three period. The soluble sugar contents of CT (W-G→M) and CT (W→M) during the filling period was significantly lower than that of other treatments. The contents of soluble protein in maize leaves under different tillage treatments showed a trend of increasing first and then decreasing, however, the peak occurrence periods were different in the different farming treatments. MDA contents under different tillage treatments increased first and then decreased. SLW under W/M mode at maturity was 23.75% and 19.87% higher than that of W-G→M and W→M modes, respectively, and NT(W/M) treatment was 13.17%-39.66% higher than that of other treatments. Under the NT treatment, the long axes of mitochondria in maize leaves were nearly parallel, inner and outer membrane as well as cristae were clearly visible, and the mitochondria of CT treatment were long and disordered, curved in cells, most of them accumulated in the corner of the cell, the inner and outer membrane were fuzzy. In the W/M mode, wheat yield of NT was 8.17% higher than that of CT, maize yield of NT increased by an average of 13.91% compared with CT, the W/M model showed the largest increase in maize yield; When compared to CT, the no-tillage method could increase the contents of soluble sugar, soluble protein, and SLW of maize leaves, boost the quantity of chloroplasts in the leaves, reduced the MDA content of the leaves by intercropping, and relieved leaf aging. In comparison to conventional tillage, the grain weight per plant and 100-grain weight were 9.24% and 9.40% higher and the yield of no-tillage maize was 13.91% higher, respectively. There was a positive correlation between 100-grain weight, grain weight per plant, and maize yield. The yields of wheat and maize under the different planting modes were lower than the rotation mode because of the different sowing densities. Land equivalent ratios of W/M mode were 1.30-1.36. Consequently, the no-tillage method of intercropping maize is better suited for the adoption and dissemination of the oasis irrigation area.

Key words: Maize, Farming patterns, Leaf physiology, Microstructure, Yield

Fig.1

Soluble sugar contents of maize leaves at different growth stages Different lowercase letters indicate significant differences among different treatments during the same period (P < 0.05), the same below."

Fig.2

Soluble protein contents of maize leaves at different growth stages"

Fig.3

MDA contents in leaves of maize at different growth stages"

Fig.4

The SLW in different treatments at maize growth stages"

Fig.5

Mitochondrial structure of maize leaves under different treatments"

Fig.6

Number and distribution of chloroplasts in maize leaves under different treatments"

Fig.7

Chloroplast structure of maize leaves under different treatments"

Table 1

Effects of different treatments on yield components of maize"

处理
Treatment
株高
Plant
height (m)
穗长
Spike
length (cm)
穗位高
Spike
height (m)
穗行数
Row number
per spike
行粒数
Grain number
per row
单株粒重
Grain weight
per plant (g)
百粒重
100-grain
weight (g)
含水率
Water content
(%)
秃尖长
Bald tip
length (cm)
NT(W/M) 3.02c 21.63a 1.05bc 16.27b 41.60a 318.02a 43.63ab 16.51bc 1.40a
CT(W/M) 2.77d 20.68a 1.00c 16.53ab 41.07a 266.51b 39.19d 14.06c 1.31a
NT(W-G→M) 3.42ab 21.25a 1.26ab 17.47a 40.53a 273.86ab 46.65a 20.11a 1.26a
CT(W-G→M) 3.01c 21.67a 1.10bc 16.67ab 42.07a 268.84b 42.50bc 18.87ab 1.36a
NT(W→M) 3.51a 21.72a 1.39a 17.20ab 41.20a 289.49ab 42.97bc 21.02a 1.46a
CT(W→M) 3.23b 21.62a 1.22ab 17.47a 42.47a 271.46ab 40.12cd 20.77a 0.85a

Table 2

Effects of different treatments on crop yields"

处理
Treatment
2020 2021 LER
小麦产量
Wheat yield (kg/hm2)
玉米产量
Maize yield (kg/hm2)
小麦产量
Wheat yield (kg/hm2)
玉米产量
Maize yield (kg/hm2)
NT(W/M) 3493.16±452.26b 14 101.50±1562.34a 3899.99±471.16a 16 697.10±1755.41b 1.36±0.15a
CT(W/M) 3009.35±105.78b 12 810.00±1235.46a 3605.39±432.09a 13 992.65±2140.46b 1.30±0.05a
NT(W-G→M) 6258.20±506.54a 22 591.80±1542.10a
CT(W-G→M) 5400.70±263.54ab 22 178.75±308.70a
NT(W→M) 5856.70±496.35a 23 872.20±1531.04a
CT(W→M) 5389.20±562.37ab 22 390.50±1493.25a

Fig.8

Correlation analysis between maize yield and its components “*”represents P < 0.05,“**”represents P < 0.01,“***”represents P < 0.001."

[1] 马丽, 李潮海, 付景, 等. 垄作栽培对高产田夏玉米光合特性及产量的影响. 生态学报, 2011, 31(23):156-165.
[2] 李少昆, 赵久然, 董树亭, 等. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50(11):1941-1959.
doi: 10.3864/j.issn.0578-1752.2017.11.001
[3] 袁零. 中国西北生态脆弱区休耕规模的影响因素探讨. 绿色科技, 2019(6):13-15.
[4] 李传华, 朱同斌, 周敏, 等. 河西走廊植被净初级生产力时空变化及其影响因子研究. 生态学报, 2021, 41(5):1931-1943.
[5] 张潇丹. 河西走廊日光温室光热环境营造过程研究及数学模型构建. 兰州:甘肃农业大学, 2020.
[6] 尚小龙, 曹建斌, 王艳, 等. 保护性耕作技术研究现状及展望. 中国农机化学报, 2021, 42(6):56-58.
[7] 徐晨, 张丽华, 赵洪祥, 等. 不同栽培模式下半干旱区玉米籽粒形成和叶片对光与CO2响应特性. 干旱地区农业研究, 2022, 40(1):1-10.
[8] 李静. 夏玉米不同栽培模式冠层结构特性和光能利用率的差异及其生理基础. 泰安:山东农业大学, 2021.
[9] Jin B, Wang L, Wang J, et al. The effect of experimental warming on leaf functional traits leaf structure and leaf biochemistry in Arabidopsis thaliana. BMC Plant Biology, 2011, 11:35.
[10] Gorsuch P A, Pandey S, Atkin O K. Temporal heterogeneity of cold acclimation phenotype in Arabidopsis leaves. Plant,Cell and Environment, 2010, 33(2):244-258.
[11] 傅鹏霄, 王珏, 李广浩, 等. 不同栽培模式对江苏省夏玉米产量和氮素利用的影响. 江苏农业学报, 2021, 37(5):1151-1159.
[12] 段勇. 灌溉和种植方式对糯玉米生长和产量的影响分析. 太原:太原理工大学, 2020.
[13] 赵笃勤. 玉米―大豆间作和减量施氮对作物生长、产量及土壤氮素的影响. 太原:太原理工大学, 2020.
[14] 王琦明. 减氮及间作绿肥对玉米产量和土壤温室气体排放的互作效应. 兰州:甘肃农业大学, 2019.
[15] 董楠. 不同作物组合间作优势和时空稳定性的生态机制. 北京:中国农业大学, 2017.
[16] 杨彩红, 耿艳香, 伏星舟, 等. 麦茬免耕对不同麦玉轮作方式土壤有机碳含量的影响. 麦类作物学报, 2022, 42(3):380-388.
[17] 李秀军, 田春杰, 徐尚起, 等. 我国农田生态环境质量现状及发展对策. 土壤与作物, 2018, 7(3):267-275.
[18] 鲁向晖, 隋艳艳, 王飞, 等. 保护性耕作技术对农田环境的影响研究. 干旱地区农业研究, 2007(3):66-72.
[19] 程玉柱. 玉/豆间作下品种和田间配置对玉米生长和产量形成的影响. 南京:南京农业大学, 2015.
[20] Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany, 2004, 55(407):2365-2384.
doi: 10.1093/jxb/erh269 pmid: 15475377
[21] 程铭慧. 时空亏缺灌溉对玉米生长、生理特性及水分利用效率的影响. 杨凌:西北农林科技大学, 2019.
[22] 申磊, 王秀媛, 滕元旭, 等. 干旱区玉米大豆单间作生长及产量影响的研究. 石河子大学学报(自然科学版), 2022, 40(1):13-20.
doi: 10.13880/j.cnki.65-1174/n.2021.21.034
[23] 李广浩, 刘平平, 赵斌, 等. 不同水分条件下控释尿素对玉米产量和叶片衰老特性的影响. 应用生态学报, 2017, 28(2):571-580.
[24] 高昆, 石义妃. 干旱胁迫对粉葛幼苗生长及生理特性的影响. 江苏农业科学, 2021, 49(8):153-157.
[25] 刘耀权. 氮肥运筹对旱农区玉米叶片抗衰老特性及产量的影响. 兰州:甘肃农业大学, 2021.
[26] 原丽娜, 胡田田. 局部施氮对玉米生理生化特性和产量的影响. 干旱地区农业研究, 2008, 26(4):49-52.
[27] 李艳红. 玉米花生间作体系产量效应分析及其生理基础研究. 泰安:山东农业大学, 2019.
[28] 张丽娟, 杨恒山, 张玉芹, 等. 宽行种植模式对春玉米叶片生理特性及产量的影响. 内蒙古民族大学学报(自然科学版), 2018, 33(4):333-338.
[29] 于晓波, 梁建秋, 何泽民, 等. 玉米-大豆带状套作对大豆叶片形态及光合特性的影响. 中国油料作物, 2016, 38(4):452- 459.
[30] 杨萌珂. 玉米花生间作功能叶的光合荧光特性及叶绿体超微结构. 洛阳:河南科技大学, 2014.
[31] Scopel E, Triomphe B, Affholder F, er al. Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts: A review. Agronomy for Sustainable Development, 2013, 33:113-130.
[32] 徐欣, 王笑影, 鲍雪莲, 等. 长期免耕不同秸秆覆盖量对玉米产量及其稳定性的影响. 应用生态学报, 2022, 33(3):671-676.
doi: 10.13287/j.1001-9332.202203.015
[33] 李景, 吴会军, 武雪萍, 等. 长期免耕和深松提高了土壤团聚体颗粒态有机碳及全氮含量. 中国农业科学, 2021, 54(2):334- 344.
doi: 10.3864/j.issn.0578-1752.2021.02.009
[34] 朴琳, 李波, 陈喜昌, 等. 优化栽培措施对春玉米密植群体冠层结构及产量形成的调控效应. 中国农业科学, 2020, 53(15):3048-3058.
doi: 10.3864/j.issn.0578-1752.2020.15.006
[35] 吕巨智, 范继征, 谢小东, 等. 不同耕作方式对玉米生长发育、产量及品质的影响. 山东农业科学, 2021, 53(7):34-38.
[36] 霍志金. 地力与栽培模式对夏玉米冠层结构及生理特性的影响. 泰安:山东农业大学, 2015.
[37] 杨彩红, 耿艳香, 伏星舟, 等. 免耕轮作对西北荒漠绿洲小麦、玉米产量和光合特性的影响. 干旱地区农业研究, 2022, 40 (1):11-19.
[38] 宋勇, 王宇先, 赵蕾, 等. 免耕种植对玉米生长发育及产量效益的影响. 黑龙江农业科学, 2021(9):15-19.
[39] 李宏, 张作刚, 薛金爱, 等. 不同耕作方式对土壤环境及玉米产量与效益的影响. 玉米科学, 2021, 29(4):70-77.
[1] Fa Xiaotong, Meng Qinghao, Wang Chen, Gu Hanzhu, Jing Wenjiang, Zhang Hao. Research Progress on Response of Rice Root Morphology and Physiology to Alternate Wetting and Drying Irrigation [J]. Crops, 2024, 40(6): 1-8.
[2] Li Fei, Bian Shaofeng, Xu Chen, Zhao Hongxiang, Song Hanglin, Wang Fuchen, Zhuang Yan. Effects of Ridge Side Cultivation on Maize Physiological Characteristics, Growth and Development in Sloping Farmland [J]. Crops, 2024, 40(6): 120-125.
[3] Wang Benfu, Yu Zhenyuan, Song Pingyuan, Zhang Zuolin, Zhang Zhisheng, Li Yang, Su Zhangfeng, Zheng Zhongchun, Cheng Jianping. Effects of Soil Amendments on Soil Characteristics and Rice Growth in Cold Waterlogged Paddy Field [J]. Crops, 2024, 40(6): 126-131.
[4] Zeng Qianqian, Zhang Zhenyuan, Ma Xiue, Fang Yinghan, Zhai Jinlei, Jin Tao, Liu Dong, Liu Zhangyong. Effects of Diatomite Application on Yield and Nitrogen Use Efficiency of Rice [J]. Crops, 2024, 40(6): 147-152.
[5] Yang Xinyue, Xiang Ying, Chen Ziheng, Lin Qian, Deng Zhenpeng, Zhou Keyou, Li Mingcong, Wang Jichun. Effects of Organic Matter Application Rate on Yield and Nitrogen, Phosphorus and Potassium Nutrient Absorption and Utilization in Potato [J]. Crops, 2024, 40(6): 153-161.
[6] Zhang Jinxin, Ge Junzhu, Li Congfeng, Zhou Baoyuan. Characteristics of Climate Resources Distribution and Utilization during the Growth Period of Summer Maize in Huang-Huai-Hai Plain [J]. Crops, 2024, 40(6): 162-170.
[7] Zhao Ximei, Li Qi, Yan Ruyu, Xiang Fengyun, Li Yaqiong, Li Xuxun, Zou Jialong, Li Jifu. Effects of UAV Aerial Seeding Period and Seeding Methods on Yield, Quality and Economic Benefits of Winter Oilseed Rape [J]. Crops, 2024, 40(6): 179-185.
[8] Jin Yanjun, Zhu Hongsha, Li Chengdong, Wang Jinyu, Zhang Zhongfu, Wan Tingli, Zhou Aiai, Sa Gang, Cheng Lixiang, Liu Juan, Yu Bin. Regulation of Exogenous Hormones on Stomatal Density of Leaves and Tuber Yield of Potato in Aeroponics [J]. Crops, 2024, 40(6): 205-211.
[9] Han Xiaowei, Zhou Jiangming, Gao Yingbo, Tian Xuehui, Li Mingjun, Hao Yanjie, Li Wei, Li Shubing, Liu Shuze. Research on Refined Selection Method for Maize Seeds Based on Machine Vision Technology [J]. Crops, 2024, 40(6): 242-248.
[10] Yu Mu, Yang Haitang, Hu Yanling, Liu Ruanzhi, Shi Yanzhao, Li Pan, Han Yanhong, Zhu Zhenzhen, Li Shizhong, Guo Zhenchao. Genotype-by-Environment Interaction and Stability of Yield Components in Peanut [J]. Crops, 2024, 40(6): 55-60.
[11] Yang Tiexin, Dong Liqiang, Ma Liang, Feng Yingying, Li Zhiqiang. Evaluation on Yield and Quality of Fragrant Japonica Rice in Plain Rice Production Region in Central Liaoning [J]. Crops, 2024, 40(6): 71-77.
[12] Hao Qingting, Gao Wei, Zhang Zeyan, Yan Hubin, Zhu Huijun, Zhang Yaowen. The Effects of Iron Fertilizer Application on Yield and Fe Concent of Grains in Mung Bean [J]. Crops, 2024, 40(5): 105-109.
[13] Sun Guangxu, Liu Ying, Wang Xinyi, Kong Deyong, Wei Na, Xing Liwen, Guo Wei. Effects of Population Density and Fulvic Acid on Yield and Nutritional Quality of Kidney Bean [J]. Crops, 2024, 40(5): 110-118.
[14] Wang Shanshan, Yang Yulei, Liu Feihu, Yang Yang, Tang Kailei, Li Tao, Niu Longjiang, Du Guanghui. Effects of Concentrations and Treatment Periods of Polyazole on Inflorescence and Leaves Yield and Cannabidiol Content of Industrial Hemp [J]. Crops, 2024, 40(5): 119-124.
[15] Huang Yulan, Liu Wenjun, Li Yanying, Zhou Jia, Zhou Lingzhi, Lao Chengying, Li Suping, Shen Zhangyou, Wei Benhui. Effects of Intercropping Cassava with Pumkin of Different Densities in Cassava Fields on Crop Yield, Economic Efficiency and Land Productivity [J]. Crops, 2024, 40(5): 125-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!