Crops ›› 2024, Vol. 40 ›› Issue (6): 120-125.doi: 10.16035/j.issn.1001-7283.2024.06.016

Previous Articles     Next Articles

Effects of Ridge Side Cultivation on Maize Physiological Characteristics, Growth and Development in Sloping Farmland

Li Fei1,2(), Bian Shaofeng2, Xu Chen2, Zhao Hongxiang2(), Song Hanglin2, Wang Fuchen3, Zhuang Yan1,2   

  1. 1College of Agriculture, Jilin Agricultural University, Changchun 130118, Jilin, China
    2Institute of Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
    3Jilin Academy of Agricultural Sciences, Jilin 132101, Jilin, China
  • Received:2023-11-07 Revised:2024-01-30 Online:2024-12-15 Published:2024-12-05

Abstract:

Ridge side cultivation (RSC) of maize, a kind of conservation tillage method in sloping farmland, has been practiced for years in the mountain regions of Northeast China. In order to clarify the influencing machanism of RSC on maize growth and development, photosynthetic characteristics, physiological characteristics and yield, a comparative experiment of maize RSC (T1) and conventional cultivation (CK) was carried out for two years in sloping farmland of eastern mountainous area of Jilin province. The results showed that compared with CK, T1 could significantly increase net photosynthetic rate, stomatal conductance and transpiration rate at maize V12 and VT stages. T1 had significant negative impacts on peroxidase, catalase, nitrate reductase and PEP carboxylase, and hadn't significant impact on superoxide dismutase, glutamine synthetase and RuBP carboxylase at jointing (V8) stage, and hadn't significant impacts on maize carbon metabolic enzyme, nitrogen metabolic enzyme and leaf protect enzyme at V12 and VT stages. T1 didn't had significant impact on dry matter accumulation (DM) at V8 and V12 stages, whereas DM was significant higher in T1 treatment than CK at VT stage. T1 had significant negative impact on maize root bleeding in V8, whereas it had significant positive impacts at V12 and VT stages. T1 didn't have significant impact on leaf area. T1 could lower the plant height and ear height significantly, and increase number of maize grains per ear, 100-grain weight and yields. The findings showed that RSC could boost maize output and has significant impacts on photosynthetic and physiological traits as well as growth and development in maize.

Key words: Maize, Physiological characteristics, Ridge side cultivation, Sloping farmland, Growth and development

Fig.1

Effects of different cultivation patterns on maize growth, development and dry matter accumulation Different lowercase letters indicate significant differences at the P < 0.05 level, the same below."

Table 1

Effects of different cultivation patterns on maize photosynthetic characteristics"

处理
Treatment
Pn [(μmol/(m2·s)] Gs [mmol/(m2·s)] Tr [mmol/(m2·s)] Ci (μmol/mol)
V12 VT V12 VT V12 VT V12 VT
T1 45.45±2.96a 23.34±7.92A 0.37±0.05A 0.18±0.17a 3.98±0.36A 3.72±0.23a 137.17±22.92a 136.64±7.45B
CK 39.10±2.64b 18.14±2.94B 0.15±0.01B 0.11±0.46b 1.58±0.82B 3.00±1.22b 118.08±10.04a 189.64±7.46A

Fig.2

Effects of different cultivation patterns on maize root bleeding intensity"

Table 2

Effects of different cultivation patterns on maize root bleeding components"

生育期Growth stage 处理Treatment 可溶性糖SS (mg/g) 脱落酸ABA (μg/g) 生长素IAA (μg/g) 细胞分裂素CTK (μg/g)
V8 CK 211.58±2.33a 61.23±2.82b 17.65±0.88b 10.45±0.54a
T1 213.71±2.82a 71.12±2.31a 19.87±0.53a 10.97±0.32a
V12 CK 207.46±3.45a 68.50±3.91a 18.91±0.82a 11.33±0.65a
T1 192.52±4.16a 63.33±2.65a 19.58±0.81a 11.11±0.31a
VT CK 211.64±4.24a 70.75±2.83a 19.93±0.46a 11.25±0.42a
T1 220.62±3.67a 71.07±2.54a 19.41±0.94a 11.05±0.22a

Table 3

Effects of different cultivation patterns on the activities carbon metabolism, nitrogen metabolism and antioxidase of maize leaves IU/g"

生育期
Growth
stage
处理
Treatment
抗氧化酶
Antioxidase
氮代谢酶
Nitrogen metabolism enzyme
碳代谢酶
Carbon metabolism enzyme
SOD POD CAT GS NR RuBP PEPC
V8 T1 969.69±28.14a 4.43±0.26b 90.16±4.35b 11.86±0.54a 34.29±1.36b 76.32±2.04a 4.88±0.15b
CK 926.82±29.23a 5.06±0.14a 107.34±4.62a 11.80±0.55a 40.63±1.42a 82.62±4.23a 5.33±0.25a
V12 T1 905.20±106.45a 5.48±0.26a 104.39±5.93a 11.67±0.83a 33.66±1.44a 79.10±6.67a 5.01±0.28a
CK 898.91±42.72a 5.06±0.33a 102.00±4.04a 12.61±0.31a 37.40±4.45a 77.26±7.12a 5.13±0.23a
VT T1 960.54±88.76a 5.33±0.52a 99.33±2.31a 12.17±0.92a 36.56±2.63a 79.09±5.24a 4.48±0.32a
CK 834.21±38.65a 4.73±0.27a 97.91±3.45a 12.84±0.41a 38.81±1.37a 83.00±1.73a 4.93±0.16a

Table 4

Effects of different cultivation patterns on maize yield and its components"

处理
Treatment
产量
Yield (kg/hm2)
穗行数
Ear number per row
穗粒数
Grain number per ear
百粒重
100-seed weight (g)
穗长
Ear length (cm)
T1 724.66±26.84a 14.73±1.26a 657.42±11.24a 33.23±0.93a 18.03±2.57a
CK 678.33±16.57b 14.47±1.45a 607.93±26.43b 31.64±0.36b 17.95±3.54a
[1] 陈绪昊, 高强, 陈新平, 等. 东北三省玉米生产资源投入和环境效应的时空特征. 中国农业科学, 2022, 55(16):3170-3184.
doi: 10.3864/j.issn.0578-1752.2022.16.009
[2] 王大中, 龙雨涛, 常晓东. 东北半干旱区坡耕地水土流失概况及防治策略. 农业与技术, 2013, 3(8):226.
[3] 王芙臣, 史旭曾, 李斐, 等. 坡耕地嵌入覆盖作物条件下不同秸秆还田方式对玉米农艺性状及产量的影响. 玉米科学, 2022, 30(6):93-101.
[4] 王芙臣. 东部坡耕地混播覆盖作物对不同秸秆还田方式下的玉米生长及土壤性状的影响. 长春:吉林农业大学, 2023.
[5] 肖春艳, 王秀玲, 管俊, 等. 玉米垄侧播种抗旱栽培技术. 作物杂志, 2006(6):39-40.
[6] 王洪飞, 谭佩东. 磐石市玉米垄侧保墒栽培保护性耕作技术分析报告. 农业机械, 2012, 698(2):33-34.
[7] 田玉秋, 杜向平, 于广红, 等. 玉米垄侧减免耕保墒栽培技术. 吉林农业, 2012(4):105.
[8] 杨晓冬, 肖春艳. 玉米垄侧抗旱栽培. 农村科学实验, 2006, 426(4):6.
[9] 王柏军, 李春阳, 陈永新. 玉米垄侧保墒栽培技术. 吉林农业, 2018(1):47.
[10] 吴兰芳, 岑庆宋, 张超, 等. 不同玉米品种主要农艺性状与产量的灰色关联度分析. 耕作与栽培, 2022, 42(6):5-9.
[11] 陈春艳, 杨珊, 李清超, 等. 5个玉米新组合产量与主要农艺性状的灰色关联度分析. 中国农学通报, 2022, 38(15):11-16.
doi: 10.11924/j.issn.1000-6850.casb2021-0749
[12] 孙彩霞, 刘志刚, 荆艳东. 水分胁胁迫对玉米叶片关键防御酶系活性及其同工酶的影响. 玉米科学, 2003, 11(1):63-66.
[13] 王娟, 李德全, 谷令坤. 不同抗旱性玉米幼苗根系抗氧化系统对水分胁迫的反应. 西北植物学报, 2002, 22(22):285-290.
[14] 苏中军, 于龙凤, 安福全. 不同缺素培养对玉米叶片脂质过氧化及保护酶活性的影响. 黑龙江农业科学, 2009(2):62-64.
[15] 王洪预, 李秋祝, 赵宏伟, 等. 不同生育时期干旱处理对春玉米保护酶活性及产量的影响. 东北农业大学学报, 2007, 38 (1):13-17.
[16] 时向东, 刘艳芳, 文志强, 等. 植物根系伤流研究进展. 安徽农业科学, 2006, 34(10):2043-2045.
[17] 黄琼,伊力哈木·托哈迪,艾尔肯·依不拉音. 植物伤流液的研究和应用. 新疆医科大学学报, 2013, 36(11):1573-1576.
[18] 吴雅薇, 李强, 豆攀, 等. 低氮胁迫对不同耐低氮玉米品种苗期伤流液性状及根系活力的影响. 植物营养与肥料学报, 2017, 23(2):278-288.
[19] Xiao L G, Kuhn N J. Net effects of conservation agriculture principles on sustainable land use: A synthesis. Global Change Biology, 2021, 27:6321-6330.
[20] 农业农村部, 财政部. 东北黑土地保护性耕作行动计划(2020- 2025年). 2020.
[21] 金亚征, 王莉, 刘朝巍. 中国玉米保护性耕作研究进展. 河北北方学院学报, 2009, 22(3):36-42.
[22] 刘志刚, 王晓丽. 玉米垄侧减免耕保墒栽培的利弊分析. 农业与技术, 2016, 36(10):6.
[23] 王长河, 杜向红, 于广平, 等. 玉米机械化免耕保墒垄侧栽培技术在松原市宁江区推广实施情况. 吉林农业, 2015(3):57.
[24] 洪杰. 玉米垄侧保墒栽培保护性耕作技术及推广. 农业机械, 2008(32):60-61.
[25] 何学利. 植物体内的保护酶系统. 现代农业科技, 2010(10):37-38.
[26] 鲁俊田, 赵新华, 宁家林, 等. 玉米―花生间作系统与玉米根功能及其保护酶活性关系研究. 玉米科学, 2018, 26(6):99- 103.
[27] 马立婷, 王沣, 田平, 等. 耕作方式与玉米根系功能及其保护酶活性关系研究. 玉米科学, 2017, 25(3):59-64.
[28] 孙燕, 姜兴印, 周丽萍, 等. 褐斑病空间分布对夏玉米光合酶和保护酶活性影响. 植物生理学报, 2012, 48(8):804-814.
[29] 陈芳, 谷晓平, 于飞, 等. 不同栽培方式对玉米光合特性及产量的影响. 中国农学通报, 2017, 33(10):23-30.
doi: 10.11924/j.issn.1000-6850.casb16100034
[30] 孟祥盟, 孙宁, 边少锋, 等. 化控技术对春玉米农艺性状及光合性能的影响. 玉米科学, 2014, 22(4):78-83.
[31] 张丽华, 边少锋, 孙宁, 等. 保水剂不同粒型及施用量对玉米产量和光合性状的影响. 玉米科学, 2017, 25(1):153-156.
[32] 王创云, 邓妍, 赵丽, 等. 不同覆膜栽培方式对玉米光合特性及产量形成的影响. 中国农学通报, 2015, 31(30):62-27.
doi: 10.11924/j.issn.1000-6850.casb15040179
[33] 常江, 张自立, 郜红建, 等. 外源稀土对水稻伤流组分的影响. 植物营养与肥料学报, 2004, 10(5):522-525.
[34] 梁建生, 曹显祖. 杂交水稻叶片的若干生理指标与根系伤流强度关系. 江苏农学院学报, 1993, 14(4):25-30.
[35] 自书农, 肖剃华. 杂交水稻根系生长与呼吸强度的研究. 作物学报, 1998, 14(3):53-59.
[36] 邱鸿步, 陆定志, 王斌斌, 等. 粕型水稻的叶片老化与植株伤流强度及产量的研究. 浙江农业科学, 1981(4):175-178.
[37] 赵森霖, 黄高宝. 保护性耕作对农田杂草群落组成及物种多样性的影响. 甘肃农业大学学报, 2009, 44(3):122-127,139.
[38] Virginia N, Nele V. Weed dynamics and conservation agriculture principles: A review. Field Crops Research, 2015, 183:56-68.
[39] Bhagirath S C, Ravi G S, Gulshan M. Ecology and management of weeds under conservation agriculture: A review. Crop Protection, 2012, 38:57-65.
[40] Nawaz A, Jam N A. Conservation Agriculture. Berlin:Springer, 2015.
[1] Cheng Shengyu, Yang Caihong, Cui Wenqiang, Jiang Xiaomin. Effects of Different Farming Patterns on the Physiology and Structure of Maize Leaves [J]. Crops, 2024, 40(6): 103-112.
[2] Li Feng, Gao Hongyun, Zhang Chong, Zhang Baoying, Ma Jianfu, Guo Na, Bai Wei, Fang Aiguo, Yang Zhimin, Li Yuan. Effects of Salt Stress on Growth and Physiological Indexes of Oat [J]. Crops, 2024, 40(6): 140-146.
[3] Zhang Jinxin, Ge Junzhu, Li Congfeng, Zhou Baoyuan. Characteristics of Climate Resources Distribution and Utilization during the Growth Period of Summer Maize in Huang-Huai-Hai Plain [J]. Crops, 2024, 40(6): 162-170.
[4] Hu Yaqing, Li Chunqing, Wang Guan, Xu Jiang. Analysis of Growth, Development and Carbon Metabolism of Rice BR Receptor Mutant Fn189 at Jointing Stage [J]. Crops, 2024, 40(6): 218-225.
[5] Han Xiaowei, Zhou Jiangming, Gao Yingbo, Tian Xuehui, Li Mingjun, Hao Yanjie, Li Wei, Li Shubing, Liu Shuze. Research on Refined Selection Method for Maize Seeds Based on Machine Vision Technology [J]. Crops, 2024, 40(6): 242-248.
[6] Xiao Xiao, Zhong Kunquan, Tu Xiaoju, Yi Zhenxie. Effects of Low Temperature Acclimation Duration on Cold Tolerance Physiological Characteristics in Vegetable Sweet Potato Seedlings [J]. Crops, 2024, 40(5): 140-145.
[7] Yu Tao, Zhang Jianguo, Cao Jingsheng, Ma Xuena, He Chang’an, Cao Shiliang, Li Shujun, Cai Quan, Li Xin, Li Sinan, Yang Gengbin, Li Wenyue. Identification and Evaluation of Low Temperature Tolerance of 110 New Maize Materials at Germination Stage [J]. Crops, 2024, 40(5): 18-28.
[8] Zhang Xuli, Wang Ruijun, Xi Xiaoqian, Feng Xuejin, Li Hong. Effects of Drought Stress and Rehydration on Growth, Physiological Characteristics and Accumulation of Secondary Metabolites in Astragalus Mongholicus Seedlings [J]. Crops, 2024, 40(5): 204-211.
[9] Zheng Fei, Meng Qingchang, Kong Lingjie, Cui Yakun, Chen Jing, Chen Ziheng, Zhang Meijing, Liu Ruixiang, Zhao Wenming, Yuan Jianhua, Chen Yanping. Breeding and Strategy Analysis of New Maize Variety Sukeyu 076 with High and Stable Yield in Huang-Huai-Hai Region [J]. Crops, 2024, 40(5): 68-72.
[10] Ma Yanhua, Sun Dequan, Li Suiyan, Lin Hong, Pan Liyan, Li Donglin, Fan Jinsheng, Wu Jianzhong, Yang Guowei. Comprehensive Evaluation of Main Agronomic Traits and Screening of Excellent Germplasms of Maize Landraces in Heilongjiang Province [J]. Crops, 2024, 40(4): 103-112.
[11] Yang Ke, Jiang Chunxia, Zhang Wei, Liu Enke, Zhai Guangqian, Zhang Dongmei. Study on the Effects of Different Treatments on Mechanical Harvest Broken Rate of Maize Grains [J]. Crops, 2024, 40(4): 138-143.
[12] Wang Fugui, Zou Runhou, Gao Julin, Wang Zhen, Cheng Zhipeng, Hao Qi, Zhang Yuezhong, Wang Zhigang. Effects of Straw Returning Methods on Soil Water and Heat and Seedling Growth and Yield of Spring Maize in Eastern Region of Inner Mongolia [J]. Crops, 2024, 40(4): 223-231.
[13] Li Qingchao, Zhang Dengfeng, Li Chunhui, Yang Shan, Liu Jianxin, Wu Xun. Genetic Diversity Analysis and Comprehensive Evaluation of Maize Landraces in Southwest China [J]. Crops, 2024, 40(4): 24-32.
[14] Li Chunqing, Liu Xiangyu, Yan Peng, Zhou Liuqian, Lu Lin, Dong Zhiqiang, Xu Jiang. Physiological Identification and Comprehensive Evaluation of Drought Resistance of Different Maize Varieties [J]. Crops, 2024, 40(4): 253-262.
[15] Wang Lu, Deng Jie, Zhang Ze, Zhao Mengwei, Che Xinyang, Wang Guangyi, Guo Xu, Zhang Haiyang, He Lin, Weng Jianfeng, Xu Jingyu. Identification and Evaluation of Drought Tolerant Germplasm Resources at Seedling Stage of Maize under PEG Stress [J]. Crops, 2024, 40(4): 43-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!