Crops ›› 2024, Vol. 40 ›› Issue (6): 147-152.doi: 10.16035/j.issn.1001-7283.2024.06.020

Previous Articles     Next Articles

Effects of Diatomite Application on Yield and Nitrogen Use Efficiency of Rice

Zeng Qianqian1(), Zhang Zhenyuan1, Ma Xiue1, Fang Yinghan1, Zhai Jinlei1, Jin Tao1(), Liu Dong2, Liu Zhangyong1   

  1. 1Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University / College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Guangzhou lnstitute of Geochemistry, Chinese Academy of Sciences / Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences / Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640, Guangdong, China
  • Received:2023-08-11 Revised:2023-11-08 Online:2024-12-15 Published:2024-12-05

Abstract:

In order to determine the effects of diatomite (Si), N (N), and combination of N and diatomite (N+Si) on rice yield and nitrogen use efficiency, experiments were conducted in Jingzhou, Hubei province from 2021 to 2022, with no diatomite and nitrogen as control (CK). The yield, its components and nitrogen use efficiency were measured and analyzed. The results showed that, compared with CK, Si treatment had no significant effect on rice yield. But compare with N, N+Si treatment significantly increased the yield by 39.26% and 19.80% in 2021 and 2022, respectively. The higher yield observed for N+Si treatment were attributed to higher effective panicle number, seed-setting rate and 1000-grain weight. In addition, compared with CK, Si, N and N+Si treatments significantly increased the above-ground dry matter accumulation at rice maturation, in the order of N+Si > N > Si > CK. Compared with N, N+Si treatment significantly improved the nitrogen recovery efficiency, nitrogen agronomic efficiency, nitrogen physiological utilization efficiency and nitrogen partial factor productivity, but significantly reduced the nitrogen harvest index. In summary, the combination of diatomite and nitrogen fertilizer can significantly improve the yield, biomass and nitrogen fertilizer utilization of rice in the Jianghan plain.

Key words: Rice, Diatomite, Yield, Dry matter accumulation, Nitrogen use efficiency

Table 1

Diatomite nutrient content %"

SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O MnO TiO2 P2O5 烧失量Firing loss 总计Total
62.48 15.34 4.63 0.52 0.69 1.23 0.34 0.02 0.22 0.10 14.55 100.12

Table 2

Effects of different treatments on the yield and its components of rice in 2021-2022"

年份
Year
处理
Treatment
有效穗数
Effective panicles
(×104/hm2)
穗粒数
Number of grains
per panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
产量
Yield
(kg/hm2)
2021 CK 273.60±1.18c 129.76±0.54c 78.87±0.04c 23.51±0.14b 6852.61±42.42c
Si 269.56±0.89c 136.93±0.59ab 77.52±0.11d 23.57±0.20b 6744.80±52.22c
N 321.28±1.59b 138.72±0.64a 81.13±0.13b 24.77±0.21a 8955.10±80.04b
N+Si 375.40±1.74a 136.53±0.75b 83.78±0.06a 24.44±0.22a 10 495.99±99.53a
2022 CK 238.21±0.40c 127.00±0.76c 76.99±0.10c 23.25±0.26b 5414.84±130.05c
Si 239.82±0.98c 126.04±1.05c 75.64±0.21d 22.9±0.15b 5249.97±140.33c
N 314.67±2.43b 146.91±0.92a 78.63±0.13b 24.2±0.16a 8619.84±230.22b
N+Si 376.97±4.03a 139.13±1.82b 81.46±0.02a 24.54±0.20a 10 478.01±219.65a
差异分析Analysis of variance
年份Years (Y) ** ns ** ** **
氮Nitrogen (N) ** ** ** ** **
硅藻土Diatomite (Si) ** ns ** ns **
年份×氮Y×N ** ** ** ns **
年份×硅藻土Y×Si ** ** ns ns ns
氮×硅藻土N×Si ** ** ** ns **
年份×氮×硅藻土Y×N×Si ns ns ns * *

Fig.1

Dry matter accumulation in various organs of rice at different growth stages in 2021-2022 Different lowercase letters indicate significant difference at P < 0.05 level."

Table 3

Effects of different treatments on nitrogen utilization efficiency of rice from 2021 to 2022"

年份
Year
处理
Treatment
氮素总吸收量
Total nitrogen
uptake
氮肥吸收利用率
N recovery
efficiency (%)
氮肥农学利用率
N agronomic
efficiency (kg/kg)
氮肥生理利用率
N physiological utilization
efficiency (kg/kg)
氮肥偏生产力
N partial factor
productivity (kg/kg)
氮素收获指数
N harvest
index (%)
2021 CK 66.49±1.73d 70.92±0.24a
Si 105.87±2.62c 60.45±0.17b
N 136.50±1.49b 38.89±0.77b 13.74±0.32b 35.36±0.75b 49.75±0.44b 55.50±0.33c
N+Si 162.55±1.32a 53.36±0.48a 21.07±0.49a 40.72±1.11a 58.31±0.55a 53.00±0.21d
2022 CK 44.78±1.01d 58.45±0.39a
Si 69.06±2.66c 57.26±0.41b
N 107.73±2.28b 34.97±0.79b 17.39±0.18b 48.67±0.59b 47.89±0.64b 50.70±0.27c
N+Si 132.37±1.99a 48.66±0.74a 28.88±0.29a 56.31±1.31a 57.90±0.74a 46.71±0.23d
差异分析Analysis of variance
年份Years (Y) ** ** ** ** ns **
氮Nitrogen (N) ** ns ns ns ns **
硅藻土Diatomite (Si) ** ** ** ** ** **
年份×氮Y×N ns ns ns ns ns **
年份×硅藻土Y×Si ** ns ** ns ns **
氮×硅藻土N×Si ** ns ns ns ns **
年份×氮×硅藻土Y×N×Si ** ns ns ns ns **

Fig.2

Correlation analysis between yield and its components, dry matter and nitrogen use efficiency from 2021 to 2022 P: effective panicle number, GW: 1000-grain weight, SP: number of grains per panicle, GT: seed-setting rate, Y: yield, SDW: stem dry weight, LDW: leaf dry weight, PDW: panicle dry weight, TDW: total aboveground dry matter accumulation,“*”indicates significant correlation at P < 0.05 level."

[1] He A B, Wang W Q, Jiang G L, et al. Source-sink regulation and its effects on the regeneration ability of ratoon rice. Field Crops Research, 2019, 236:155-164.
[2] Ashraf U, Hussain S, Akbar N, et al. Water management regimes alter Pb uptake and translocation in fragrant rice. Ecotoxicology and Environmental Safety, 2018, 149:128-134.
doi: S0147-6513(17)30785-6 pmid: 29156304
[3] 于飞, 施卫明. 近10年中国大陆主要粮食作物氮肥利用率分析. 土壤学报, 2015, 52(6):1311-1324.
[4] An N, Wei W L, Qian L, et al. Agronomic and environmental causes of yield and nitrogen use efficiency gaps in Chinese rice farming systems. European Journal of Agronomy, 2018, 93:40-49.
[5] 丁周宇, 张娜, 舒小伟, 等. 栽培措施对水稻氮素吸收利用及稻田尾水氮磷含量的影响. 农业环境科学学报, 2023, 42(9):2004-2015.
[6] 王平. 有机硅水溶长效系列肥. 农业知识, 2012(28):46.
[7] 赵统刚, 吴德意, 何圣兵, 等. 硅酸盐黏土矿物的表面酸性研究进展. 土壤, 2006, 38(1):17-22.
[8] He T H, Liu D Y, Yuan J J, et al. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field. Agriculture, Ecosystems & Environment, 2018, 264:44-53.
[9] 肖春宝. 化工废硅藻土综合利用技术研究. 安徽化工, 2010, 36(增1):61-64.
[10] 龚金龙, 张洪程, 龙厚元, 等. 水稻中硅的营养功能及生理机制的研究进展. 植物生理学报, 2012, 48(1):1-10.
[11] 陈志怡. 自制缓控释尿素的缓控释性能研究. 安徽农业科学, 2015, 43(11):67-69.
[12] 吴巍, 张宽, 王秀芳. 硅肥对水稻养分吸收及产量的影响. 吉林农业科学, 1996(3):51-54.
[13] 胡霭堂, 周立详. 植物营养学(下册). 北京: 中国农业大学出版社, 2003.
[14] 彭雪明. 硅肥对超级早稻产量形成与氮利用效率的影响. 长沙:湖南农业大学, 2009.
[15] 张育新, 丁杰航, 鄢文磊, 等. 硅藻土基硅肥的研究进展. 矿产保护与利用, 2022, 42(4):85-93.
[16] 刘冬. 硅藻土的矿物固体酸性及其在模板―催化法制备多孔炭中的作用与机理. 北京: 中国科学院, 2011.
[17] 黄益宗, 张文强, 招礼军, 等. Si对盐胁迫下水稻根系活力、丙二醛和营养元素含量的影响. 生态毒理学报, 2009, 4(6):860-866.
[18] 王婉露. 化肥配施生物炭对水稻产量及土壤肥力的影响. 扬州:扬州大学, 2023.
[19] 于广武, 李晓冰, 何长兴, 等. 硅肥对水稻生育性状及产量的影响. 肥料与健康, 2020(3):19-23.
[20] 刘燕, 娄运生, 杨蕙琳, 等. 施硅对增温稻田CH4和N2O排放的影响. 生态学报, 2020, 40(18):6621-6631.
[21] 苏庆旺, 苍柏峰, 白晨阳, 等. 施硅量对旱作水稻产量和干物质积累的影响. 中国水稻科学, 2022, 36(1):87-95.
doi: 10.16819/j.1001-7216.2022.201208
[22] 林瑞余, 梁义元, 蔡碧琼, 等. 不同水稻产量形成过程的干物质积累与分配特征. 中国农学通报, 2006, 22(2):185-190.
[23] 孙琪, 耿艳秋, 金峰, 等. 播期对直播水稻产量、花后各器官干物质和氮素积累及转运的影响. 作物杂志, 2020(5):119- 126.
[1] Fa Xiaotong, Meng Qinghao, Wang Chen, Gu Hanzhu, Jing Wenjiang, Zhang Hao. Research Progress on Response of Rice Root Morphology and Physiology to Alternate Wetting and Drying Irrigation [J]. Crops, 2024, 40(6): 1-8.
[2] Cheng Shengyu, Yang Caihong, Cui Wenqiang, Jiang Xiaomin. Effects of Different Farming Patterns on the Physiology and Structure of Maize Leaves [J]. Crops, 2024, 40(6): 103-112.
[3] Lü Weisheng, Wang Xinyue, Chen Ming, Deng Xueyun, Zhang Chen, Li Zijing, Luo Junyuan, Liu Xiaosan, Xiao Guobin. The Effect and the Residual Effect of Special Controlled-Release Nitrogen Fertilizer for Rapeseed (Brassica napus L.) under Rapeseed-Sesame Rotation System in Red-Soil Dryland [J]. Crops, 2024, 40(6): 113-119.
[4] Wang Benfu, Yu Zhenyuan, Song Pingyuan, Zhang Zuolin, Zhang Zhisheng, Li Yang, Su Zhangfeng, Zheng Zhongchun, Cheng Jianping. Effects of Soil Amendments on Soil Characteristics and Rice Growth in Cold Waterlogged Paddy Field [J]. Crops, 2024, 40(6): 126-131.
[5] Yang Xinyue, Xiang Ying, Chen Ziheng, Lin Qian, Deng Zhenpeng, Zhou Keyou, Li Mingcong, Wang Jichun. Effects of Organic Matter Application Rate on Yield and Nitrogen, Phosphorus and Potassium Nutrient Absorption and Utilization in Potato [J]. Crops, 2024, 40(6): 153-161.
[6] Zhang Jinxin, Ge Junzhu, Li Congfeng, Zhou Baoyuan. Characteristics of Climate Resources Distribution and Utilization during the Growth Period of Summer Maize in Huang-Huai-Hai Plain [J]. Crops, 2024, 40(6): 162-170.
[7] Zhao Ximei, Li Qi, Yan Ruyu, Xiang Fengyun, Li Yaqiong, Li Xuxun, Zou Jialong, Li Jifu. Effects of UAV Aerial Seeding Period and Seeding Methods on Yield, Quality and Economic Benefits of Winter Oilseed Rape [J]. Crops, 2024, 40(6): 179-185.
[8] Jin Yanjun, Zhu Hongsha, Li Chengdong, Wang Jinyu, Zhang Zhongfu, Wan Tingli, Zhou Aiai, Sa Gang, Cheng Lixiang, Liu Juan, Yu Bin. Regulation of Exogenous Hormones on Stomatal Density of Leaves and Tuber Yield of Potato in Aeroponics [J]. Crops, 2024, 40(6): 205-211.
[9] Hu Yaqing, Li Chunqing, Wang Guan, Xu Jiang. Analysis of Growth, Development and Carbon Metabolism of Rice BR Receptor Mutant Fn189 at Jointing Stage [J]. Crops, 2024, 40(6): 218-225.
[10] Sun Mingmao, Liu Lixia, Sun Hu, Cui Di. Analysis of Anthocyanin and Important Agronomic Traits in a Population of Recombinant Inbred Lines of Rice [J]. Crops, 2024, 40(6): 26-38.
[11] Yu Mu, Yang Haitang, Hu Yanling, Liu Ruanzhi, Shi Yanzhao, Li Pan, Han Yanhong, Zhu Zhenzhen, Li Shizhong, Guo Zhenchao. Genotype-by-Environment Interaction and Stability of Yield Components in Peanut [J]. Crops, 2024, 40(6): 55-60.
[12] Yang Tiexin, Dong Liqiang, Ma Liang, Feng Yingying, Li Zhiqiang. Evaluation on Yield and Quality of Fragrant Japonica Rice in Plain Rice Production Region in Central Liaoning [J]. Crops, 2024, 40(6): 71-77.
[13] Sun Jiameng, Gao Yuan, Chen Hu, Hua Qin, Lin Quanxiang, Chen Qingquan, Li Jincai, Zhang Haitao. Phenotypic Analysis and Gene Mapping of Rice Mutant Chalkiness and Shrunken Endosperm-2 [J]. Crops, 2024, 40(5): 1-7.
[14] Hao Qingting, Gao Wei, Zhang Zeyan, Yan Hubin, Zhu Huijun, Zhang Yaowen. The Effects of Iron Fertilizer Application on Yield and Fe Concent of Grains in Mung Bean [J]. Crops, 2024, 40(5): 105-109.
[15] Sun Guangxu, Liu Ying, Wang Xinyi, Kong Deyong, Wei Na, Xing Liwen, Guo Wei. Effects of Population Density and Fulvic Acid on Yield and Nutritional Quality of Kidney Bean [J]. Crops, 2024, 40(5): 110-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!