Crops ›› 2024, Vol. 40 ›› Issue (6): 78-83.doi: 10.16035/j.issn.1001-7283.2024.06.010

Previous Articles     Next Articles

Investigation and Analysis of Tartary Buckwheat and Planting Soil Resources in Different Producing Areas

Xu Lang1,3(), Zhang Jibin2,3, Shi Weibiao1,3, Ye Tao2,3, Chen Bo2,3, Lü Qingyin1,3, Wang Yu1,3, Huang Zhian1,3, Shen Rui1,3, Chen Zhiyuan1,3()   

  1. 1Jin Brand Co.,Ltd., Daye 435100, Hubei, China
    2Jin Brand Chizhengtang Pharmaceutical Co., Ltd., Huangshi 435000, Hubei, China
    3Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Daye 435100, Hubei, China
  • Received:2023-09-26 Revised:2023-11-16 Online:2024-12-15 Published:2024-12-05

Abstract:

The flavonoid content in Tartary buckwheat grains is not only influenced by genetic factors, but also by planting location and soil quality. In order to study the relationship between the content of flavonoids and heavy metals in tartary buckwheat seeds from different cultivation areas in China, tartary buckwheat raw materials and soil samples from tartary buckwheat cultivation areas in China, including Sichuan, Yunnan, Guizhou, Shaanxi, Gansu, Shaanxi, and Ningxia were collected, and the contents of flavonoids and heavy metals were tested and analyzed. The results showed that the flavonoid content in tartary buckwheat seeds was correlated with the altitude and latitude of the planting area, with higher flavonoid content in high altitude and low latitude regions such as Sichuan and Yunnan; Heavy metals in soil are related to heavy metals in grains, and the contents of heavy metals in tartary buckwheat is relatively low in areas with low soil heavy metals such as Sichuan and Shaanxi. The results of the overall research indicate the Sichuan tartary buckwheat has a comparatively low concentration of heavy metals and a high flavonoid content.

Key words: Tartary buckwheat, Flavonoids, Heavy metal, Soil, Rutin

Table 1

Sampling location and altitude of tartary buckwheat m"

地区
Area
编号
Number
采样地点
Sampling location
海拔
Altitude
地区
Area
编号
Number
采样地点
Sampling location
海拔
Altitude
四川凉山
Liangshan,
Sichuan
1 喜德县泥波镇打尔村 2478 云南
Yunnan
1 昭通市昭阳区鲁甸县新街镇水倒流湿地 2901
2 喜德县贺波洛乡塔青村乃洛组5组 2384 2 昭通市昭阳区鲁甸县新街镇水倒流湿地 2899
3 喜德县贺波洛乡塔青村 2403 3 昭通市昭阳区鲁甸县新街镇闪桥村王家碉 2226
4 喜德县泥波镇甘洛村 2117 4 昭通市昭阳区青岗岭乡金瓜村4组 2329
5 越西县依洛地坝镇永胜村 2208 5 昭通市昭阳区青岗岭乡金瓜村4组 2326
6 越西县尔赛乡阿尔嘎村 2164 6 昭通市昭阳区青岗岭乡摇篮树村 2325
7 甘洛县海棠镇清水村 2323 7 昭通市昭阳区靖安镇西魁坪子 2247
8 甘洛县海棠镇坪坝村坪子组 2222 8 昭通市昭阳区靖安镇闻家院子 2322
9 冕宁县拖乌乡鲁坝村 2478 9 昭通市永善县伍寨乡大梨树 2468
10 冕宁县大桥乡店子村 2101 10 昭通市永善县伍寨乡花椒林 2593
11 冕宁县彝海镇彝海村野鸡洞5组 2432 11 昭通市永善县茂林镇永安村 2508
12 昭觉县普诗乡普诗村 2625 12 昭通市巧家县马树镇马树村 2633
13 昭觉县日哈乡古里村 2575 13 曲靖市会泽县驾车乡滴水岩村 2578
14 昭觉县三岔河镇二打伍村 2576 14 曲靖市会泽县驾车乡水塘村 2470
15 昭觉县特布洛乡格吾村 2543 陕西
Shaanxi
1 榆林市靖边县乔沟湾乡许台村 1566
16 金阳县丙底镇依达村瓦伍组 2718 2 榆林市靖边县乔沟湾乡许台村 1476
17 雷波县谷堆乡谷堆村 2102 3 榆林市靖边县东坑镇塘坝渠村 1235
18 美姑县依果觉乡尔马村 2360 4 榆林市靖边县东坑镇宋梁村 1178
19 美姑县洒库乡塔古村 2331 5 榆林市靖边县东坑镇宋梁村 1185
20 美姑县觉洛乡则峨村 2317 6 榆林市定边县砖井镇 1428
21 美姑县佐戈依达乡八干洛村4组 2217 7 榆林市定边县冯地坑镇 1485
22 布拖县补尔乡日久村 2436 8 榆林市定边县白湾子镇 1529
23 布拖县补尔乡嘿门子村 2451 9 榆林市定边县张崾崄镇 1607
24 布拖县特木里镇先锋村 2488 10 安康市白河县冷水镇小双村山上 1067
25 布拖县特木里乡洛奎村 2499 11 安康市白河县冷水镇小双村山下 680
26 盐源县白乌镇卡拉坝村 2681 12 安康市岚皋县南宫山镇南宫山山上 1500
27 盐源县白乌镇长坪子村1组 2613 13 安康市岚皋县南宫山镇南宫山山下 600
28 盐源县白乌镇卡拉坝村 2654 14 安康市镇坪县曙坪镇马镇村 1891
29 盐源县棉桠镇一碗水村7组 2496 15 安康市紫阳县斑桃镇新坪垭村 780
30 盐源县棉桠镇棉桠村 2695 贵州
Guizhou
1 六盘水市盘州市盘水路在拖磨泥 2391
31 木里县列瓦镇棉布村 2946 2 六盘水市盘州市239县道在拖磨泥 2393
32 普格县五道菁镇沙河莫村 2463 3 六盘水市盘州市乌蒙镇盘水路在拖磨泥 2354
33 普格县五道菁镇沙河莫村 2463 4 毕节市威宁县 1651
34 西昌市安哈镇摆摆顶村 2555 5 毕节市威宁县小海镇 2208
35 西昌市安哈镇摆摆顶村 2555 宁夏
Ningxia
1
西海固
2275
甘肃
Gansu
1 甘肃定西市渭源县 2135
2 甘肃定西市渭源县 2135 山西
Shanxi
1
大同左云县
1517
3 甘肃定西市渭源县 2135
4 甘肃定西市渭源县 2135

Table 2

Gradient elution table"

时间
Time (min)
乙腈
Acetonitrile (%)
0.1%磷酸溶液
0.1% Phosphoric acid solution (%)
0 10 90
20 25 75
40 40 60

Fig.1

High performance liquid chromatography of standard substance (1): Quercetin-3-rutinoside 7-glucoside; (2): Rutin; (3): kaempferol-3-O-rutinoside; (4): Quercetin; (5): Kaempferol."

Table 3

Content of flavonoids in tartary buckwheat in different areas %"

产地
Area
槲皮素-3-芸香糖基-7-葡萄糖基
Quercetin-3-rutinoside-7-glucoside
芦丁
Rutin
山奈酚-3-O-芸香糖苷
Kaempferol-3-O-rutinoside
槲皮素
Quercetin
山奈酚
Kaempferol
苷元含量Content of aglycone
槲皮素Quercetin 山奈酚Quercetin
四川Sichuan 0.022 0.445 0.046 0.643 0.031 0.872 0.053
云南Yunnan 0.024 0.642 0.058 0.673 0.030 1.000 0.058
陕西Shaanxi 0.019 0.697 0.211 0.458 0.021 0.810 0.122
贵州Guizhou 0.012 0.567 0.033 0.334 0.012 0.620 0.027
甘肃Gansu 0.014 0.988 0.051 0.061 0.002 0.555 0.027
宁夏Ningxia 0.011 0.678 0.109 0.109 0.004 0.449 0.056
山西Shanxi 0.023 1.381 0.077 0.149 0.008 0.842 0.045

Table 4

Overview of altitude, latitude and quercetin content in each production area"

产地
Area
海拔
Altitude (m)
纬度
Latitude
槲皮素含量
Quercetin content (%)
四川Sichuan 2448 27°61′ 0.872
云南Yunnan 2487 27°46′ 1.000
陕西Shaanxi 1280 35°21′ 0.810
贵州Guizhou 2336 26°35′ 0.620
甘肃Gansu 2135 34°17′ 0.555
宁夏Ningxia 2275 35°73′ 0.449
山西Shanxi 1517 39°80′ 0.842

Table 5

Heavy metal contents in tartary buckwheat of production areas mg/kg"

产地Area 铬Cr 砷As 镉Cd 铅Pb
四川Sichuan 0.300 0.028 0.068 0.193
云南Yunnan 0.366 0.014 0.149 0.114
陕西Shaanxi 1.232 0.049 0.063 0.150
贵州Guizhou 0.952 0.089 0.129 0.192
甘肃Gansu 1.434 0.037 0.012 0.087
宁夏Ningxia 2.026 0.067 0.008 0.114
山西Shanxi 0.105 0.000 0.068 0.023

Table 6

Heavy metal contents in soil of production area mg/kg"

产地Area 铬Cr 砷As 镉Cd 铅Pb
四川Sichuan 44.024 10.112 0.309 33.949
云南Yunnan 48.080 8.265 0.713 34.912
陕西Shaanxi 29.447 6.940 0.251 14.278
贵州Guizhou 71.128 17.745 1.097 34.353
[1] 魏楚楚, 朱庆玲. 试析饮食文化资源的开发——以凉山彝族饮食为例. 参花:上半月, 2016(7):141.
[2] 姜忠丽, 耿晓文, 王国华. 浅谈苦荞麦的应用价值及栽培技术. 杂粮作物, 2006, 26(6):437-438.
[3] 田秀红, 刘鑫峰, 闫峰, 等. 苦荞麦的药理作用与食疗. 农产品加工, 2008(8):31-33.
[4] 周一鸣, 李保国, 崔琳琳, 等. 荞麦淀粉及其抗性淀粉的颗粒结构. 食品科学, 2013, 34(23):25-27.
doi: 10.7506/spkx1002-6630-201323006
[5] 时政, 宋毓雪, 韩承华, 等. 苦荞的膳食纤维含量研究. 中国农学通报, 2011, 27(15):62-66.
[6] 刘三才, 李为喜, 刘方, 等. 苦荞麦种质资源总黄酮和蛋白质含量的测定与评价. 植物遗传资源学报, 2007, 8(3):317-320.
[7] 夏清, 彭聪, 宋超, 等. 苦荞发芽过程中游离氨基酸含量的变化. 西北农林科技大学学报(自然科学版), 2015, 43(3):199- 204.
[8] 赵钢, 唐宇, 王安虎. 苦荞的成分功能研究与开发应用. 四川农业大学学报, 2017, 19(4):355-358,368.
[9] Zhong L Y, Lin Y J, Wang C, et al. Chemical profile,antimicrobial and antioxidant activity assessment of the crude extract and its main flavonoids from tartary buckwheat sprouts. Molecules, 2022, 27(2):374.
[10] Park B I, Kim J, Lee K, et al. Flavonoids in common and tartary buckwheat hull extracts and antioxidant activity of the extracts against lipids in mayonnaise. Journal of Food Science and Technology, 2019, 56(5):2712-2720.
doi: 10.1007/s13197-019-03761-2 pmid: 31168153
[11] Peng W, Wang N, Wang S, et al. Effect of co-treatment of microwave and exogenous l-phenylalanine on the enrichment of flavonoids in Tartary buckwheat sprouts. Journal of the Science of Food and Agriculture, 2023, 103(4):2014-2022.
[12] 李丹, 肖刚, 丁霄霖. 苦荞黄酮抗氧化作用的研究. 食品与生物技术学报, 2001, 20(1):44-47.
[13] 姚佳, 靳秔, 贾健斌. 苦荞黄酮及其生理功能的研究进展. 食品科技, 2014, 39(10):194-197.
[14] 王安虎, 张文友, 花旭斌. 原生境保存中国荞麦资源的可行性分析. 作物杂志, 2004(5):7-8.
[15] 万丽英. 播种密度对高海拔地区苦荞产量与品质的影响. 作物研究, 2008, 22(1):42-44.
[16] Ye X L, Liu C Y, Yan H L, et al. Genome-wide identification and transcriptome analysis of the heavy metal-associated (HMA) gene family in Tartary buckwheat and their regulatory roles under cadmium stress. Gene, 2022, 847:146884.
[17] 毛旭, 龚思同, 舒洁, 等. 苦荞重金属富集特征及低积累品种筛选. 种子, 2022, 41(1):19-25.
[18] 王磊. 苦荞耐受和累积铅的分子机制. 杨凌:西北农林科技大学, 2020.
[19] 张继斌, 王玉, 徐浪, 等. 不同产地苦荞麦中黄酮类成分的含量测定与分析. 食品研究与开发, 2018, 39(24):143-148.
[20] 张玉玮, 李洁, 袁勇, 等. 苦荞籽粒芦丁降解酶的纯化、酶学性质及部分一级结构分析. 生物工程学报, 2017, 33(5):796- 807.
[21] 张以忠, 陈庆富. 荞麦研究的现状与展望. 种子, 2004(3):39-42.
[22] 吴朝昕, 陈庆富, 黄娟, 等. 不同生态区对不同品种甜荞和苦荞农艺性状和品质性状的影响. 安徽农业大学学报, 2020, 47(4):618-626.
[23] 李春花, 加央多拉, 吴晗, 等. 苦荞农艺性状遗传多样性分析及综合评价. 作物研究, 2022, 36(4):363-368.
[24] 曹俊雅, 张婧, 张文茜, 等. 土壤中重金属铬(Ⅵ)污染修复技术的研究进展. 土壤通报, 2022, 53(5):1220-1227.
[25] 张睿. 重金属铬对苦荞种子萌发及幼苗生长的影响. 山西农业科学, 2016, 44(2):172-174.
[26] 许露曦, 钟格梅, 黄林, 等. 重金属污染重点地区土壤及食物砷含量调查. 环境与健康杂志, 2017, 34(12):1084-1086.
[27] 李静, 袁继超, 蔡光泽, 等. 凉山州土壤与苦荞镉和铜含量关系及污染评价. 现代农业科技, 2010(21):307-308.
[28] 王小松, 万燕, 乐梨庆, 等. 赤霉素对铅胁迫下苦荞种子萌发及幼苗生理特性的影响. 山西农业科学, 2021, 49(11):1269-1273.
[1] Lü Weisheng, Wang Xinyue, Chen Ming, Deng Xueyun, Zhang Chen, Li Zijing, Luo Junyuan, Liu Xiaosan, Xiao Guobin. The Effect and the Residual Effect of Special Controlled-Release Nitrogen Fertilizer for Rapeseed (Brassica napus L.) under Rapeseed-Sesame Rotation System in Red-Soil Dryland [J]. Crops, 2024, 40(6): 113-119.
[2] Wang Benfu, Yu Zhenyuan, Song Pingyuan, Zhang Zuolin, Zhang Zhisheng, Li Yang, Su Zhangfeng, Zheng Zhongchun, Cheng Jianping. Effects of Soil Amendments on Soil Characteristics and Rice Growth in Cold Waterlogged Paddy Field [J]. Crops, 2024, 40(6): 126-131.
[3] Zhang Ying, Wang Haiyang, Jiang Lin, Guo Xueqing, Zhong Xiaoli, Zhang Xing, Lu Minjiao, Ji Xiaoming, Yang Xiaopeng, Wu Shusong. Comprehensive Evaluation and Spatial Distribution of Soil Fertility Suitability in Changting Tobacco-Growing Area [J]. Crops, 2024, 40(6): 171-178.
[4] Xiang Dabing, Ye Xueling, Fan Yu, Liu Changying, Wan Yan, Wu Qi, Wu Xiaoyong, Peng Lianxin, Zhao Gang, Zou Liang. Breeding and Cultivation Technology of New Tartary Buckwheat Variety Chengku No.2 [J]. Crops, 2024, 40(6): 249-253.
[5] Tian Qinqin, Zhuo Le, Chen Nana, Zheng Dechao, Wu Xiaojing, Yu Peng, Chen Pingping, Yi Zhenxie. Effects of Calcium-Magnesium Hydrotalcite on Cadmium Content in Brown Rice of Double-Cropping Rice and Soil Characteristics [J]. Crops, 2024, 40(5): 131-139.
[6] Li Xinru, Xie Yanfen, Zhu Xuanquan, Wang Ge, Bai Yuxiang, Du Yu, Zhou Peng, Zhao Yuting, Zhu Hongqiong, Yang Fan, Xiao Zhiwen, Wang Wenbo, Fang Zhipeng, Han Jiabao, Wang Na. Soil Quality Evaluation and Its Correlation with Tobacco Leaf Quality under Different Previous Crops [J]. Crops, 2024, 40(5): 167-174.
[7] Lü Bo, Ding Liang, Guo Cong, Chen Feng, Zhou Haiping, Wang Xuesong, Dong Xiaolin, Xiang Fayun. Effects of Compound Microbial Fertilizer on Soil Nutrients and Rhizosphere Bacterial Community in Cotton Field [J]. Crops, 2024, 40(4): 209-215.
[8] Wang Fugui, Zou Runhou, Gao Julin, Wang Zhen, Cheng Zhipeng, Hao Qi, Zhang Yuezhong, Wang Zhigang. Effects of Straw Returning Methods on Soil Water and Heat and Seedling Growth and Yield of Spring Maize in Eastern Region of Inner Mongolia [J]. Crops, 2024, 40(4): 223-231.
[9] Guo Haibin, Zhang Jungang, Wang Wenwen, Xue Zhiwei, Xu Haitao, Feng Xiaoxi, Wang Bingong, Wang Chengye. Response of Photosynthetic Characteristics, Root Growth and Yield of Summer Maize to Subsoiling and Increasing Density in Lime Concretion Black Soil [J]. Crops, 2024, 40(3): 109-118.
[10] Liu Yajun, Lu Yun, Wang Wenjing, Hu Qiguo, Chu Fengli, Li Zhijie. Effects of Organic Fertilizer and Soil Conditioner on the Growth and Development of Continuous Cropping Sweet Potato and Soil Fertility [J]. Crops, 2024, 40(3): 168-174.
[11] Li Jiaqi, Shi Jianguo, Chen Qihang, Chang Fengyun, Duan Yizhong, Chai Guaiqiang, Jia Lei, Chen Tao. Effects of Film Mulching on Rhizosphere Soil Microbial Community of Maize in Wind-Sand Grassy Beach Area of Northern Shaanxi Province [J]. Crops, 2024, 40(3): 238-246.
[12] Pan Yue, Li Siyu, Gao Jie, Shen Xinya, Liu Lijun. Research Progress on Effects of Straw and Its Returning Methods on Soil Properties in Paddy Fields under Different Rotation Patterns [J]. Crops, 2024, 40(2): 1-8.
[13] Li Duo, Wang Chen, Zhang Mingcong, Cao Liang, Jin Xijun, Zhang Yuxian, Wang Mengxue. Effects of Water Deficit in Soybean Seedling Stage on Soil Enzyme Activity and Microbial Diversity [J]. Crops, 2024, 40(2): 148-157.
[14] Yang Enze, Xie Rui, Han Ping'an, Zhang Yonghu, Liu Jinchuan, Niu Suqing, Wen Rui, Wang Chunyong, Jin Xiaolei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits of 162 Tartary Buckwheat Resources in Inner Mongolia [J]. Crops, 2024, 40(2): 15-22.
[15] Xie Jin, Li Jincheng, Liang Zengfa, Huang Hao, Zhang Xi, Gao Renji, Jin Baofeng, Zeng Fandong, Lu Zhiwei, Cai Yixia, Wang Wei. Effects of Ridging Height and Ratio of Organic Fertilizer on Root Growth and Quality of Upper Tobacco Leaves [J]. Crops, 2024, 40(2): 165-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!