Crops ›› 2024, Vol. 40 ›› Issue (5): 131-139.doi: 10.16035/j.issn.1001-7283.2024.05.019

Previous Articles     Next Articles

Effects of Calcium-Magnesium Hydrotalcite on Cadmium Content in Brown Rice of Double-Cropping Rice and Soil Characteristics

Tian Qinqin1,2(), Zhuo Le1, Chen Nana1, Zheng Dechao1, Wu Xiaojing3, Yu Peng4, Chen Pingping1, Yi Zhenxie1()   

  1. 1College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
    2Agriculture and Rural Bureau of Hengnan County, Hengyang 421100, Hunan, China
    3Chenzhou Crop Seed Reserve and Technology Promotion Station, Chenzhou 423000, Hunan, China
    4College of Chemistry and Materials Science,Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2023-07-25 Revised:2023-12-06 Online:2024-10-15 Published:2024-10-16

Abstract:

In order to explore the effect of calcium-magnesium hydrotalcite (CMH) on cadmium content of brown rice in double-cropping rice and its suitable application methods, a two-year field experiment was conducted under different application methods of CMH (CK, 0; T1, basal application of 3000 kg/ha in early rice in first year; T2, basal application of 1500 kg/ha in early rice in first year; T3, basal application of 1500 kg/ha in early rice per year; T4, basal application of 750 kg/ha per season; T5, basal application of 375 kg/ha per season). The results showed that CMH could significantly reduce the cadmium content in brown rice of double cropping rice, but the decrease varied between varieties and years. The decrease in cadmium content of brown rice in various varieties in 2021 increased with the increment of CMH dosage, but there was no significant difference among T1, T2, and T3 treatments. The decrease in cadmium content in brown rice in 2022 was the largest in T3 treatment. CMH significantly increased soil pH and nutrients content, and reduced soil available cadmium content, and T1 and T3 treatments were the best in 2021 and 2022, respectively. Principle component analysis and correlation analysis showed that the amount of CMH was significantly negatively correlated with the available cadmium content in soil and the cadmium content in brown rice, while it was significantly positively correlated with soil pH, available phosphorus, available potassium, and alkaline nitrogen content. It can be seen that reasonable application of CMH can improve soil acidity, increase soil nutrient content, reduce effective cadmium content in soil, and ultimately reduce cadmium content in brown rice. In summary, T3 was the optimal treatment under the experimental conditions.

Key words: Rice, Calcium-magnesium hydrotalcite, Application method, Yield, Cadmium content in brown rice, Soil characteristics

Table 1

Effects of calcium-magnesium hydrotalcite on actual yield of double-cropping rice kg/hm2"

年份Year 品种Variety CK T1 T2 T3 T4 T5
2021 湘早籼45号 4.75±0.07c 5.20±0.08a 5.03±0.14ab 5.05±0.05b 4.96±0.09bc 4.79±0.05c
陆两优996 5.56±0.06c 5.89±0.13a 6.16±0.13a 6.08±0.01a 6.02±0.11b 5.78±0.03b
玉针香 6.52±0.13c 7.05±0.11a 6.63±0.09bc 7.14±0.03a 6.77±0.13abc 6.63±0.03c
创两优669 6.91±0.10c 7.69±0.10a 7.52±0.10ab 7.76±0.04a 7.23±0.16bc 7.18±0.04b
2022 湘早籼45号 6.39±0.07b 7.19±0.04a 7.13±0.12a 7.21±0.09a 6.49±0.09b 6.47±0.04b
株两优4026 7.48±0.10c 8.36±0.08ab 8.30±0.15ab 8.50±0.05a 8.17±0.30b 7.52±0.04c
玉针香 5.03±0.13c 5.27±0.03b 5.14±0.03c 5.55±0.03a 5.55±0.01a 5.13±0.04c
创两优669 5.82±0.10d 6.43±0.10b 6.15±0.06c 6.69±0.01a 6.67±0.03a 6.05±0.03c

Table 2

Effects of calcium-magnesium hydrotalcite on cadmium content in brown rice of double-cropping rice mg/kg"

年份Year 品种Variety CK T1 T2 T3 T4 T5
2021 湘早籼45号 0.09±0.01a 0.05±0.02d 0.05±0.01d 0.05±0.01d 0.06±0.01c 0.08±0.01b
陆两优996 0.10±0.01a 0.04±0.01d 0.05±0.01c 0.05±0.01c 0.07±0.02b 0.08±0.01b
玉针香 0.18±0.02a 0.09±0.01c 0.09±0.01c 0.09±0.01c 0.13±0.01b 0.12±0.01b
创两优669 0.15±0.01a 0.06±0.01c 0.07±0.01c 0.07±0.01c 0.11±0.01b 0.13±0.01b
2022 湘早籼45号 0.41±0.01a 0.18±0.01d 0.27±0.01c 0.14±0.01e 0.20±0.01cd 0.32±0.01b
株两优4026 0.26±0.01a 0.14±0.02d 0.18±0.01b 0.12±0.01e 0.16±0.01c 0.25±0.01a
玉针香 0.33±0.02a 0.19±0.01b 0.20±0.02b 0.11±0.02c 0.13±0.02c 0.20±0.02b
创两优669 0.28±0.02a 0.14±0.01cd 0.15±0.02bc 0.12±0.02d 0.13±0.02cd 0.18±0.02b

Fig.1

Effects of calcium-magnesium hydrotalcite on soil pH in double-cropping rice field RS: regreening stage, TP: tillering peak stage, BS: booting stage, FH: full heading stage, MG: mid-grouting stage, MS: mature stage. The same below."

Fig.2

Effects of calcium-magnesium hydrotalcite on soil available cadmium in double-cropping rice field"

Table 3

Effects of calcium-magnesium hydrotalcite on soil nutrients in double-cropping rice fields mg/kg"

年份Year 季别Season 处理Treatment 速效钾Available K 速效磷Available P 碱解氮Available N
2021 早稻 CK 100.00±10.50b 60.88±1.27c 157.27±1.46c
T1 140.00±11.55a 79.43±1.64a 178.97±1.07a
T2 113.33±11.55b 77.63±1.61ab 177.80±1.40a
T3 113.33±11.55b 77.09±1.59ab 176.87±0.81a
T4 106.67±11.55b 76.42±1.07b 164.03±1.62b
T5 106.67±11.55b 63.40±1.32c 161.93±2.02b
晚稻 CK 126.67±11.55c 72.41±1.50c 146.53±2.25c
T1 166.67±11.55a 84.84±1.75a 167.77±1.07a
T2 153.33±11.55ab 77.27±1.60b 165.20±3.30ab
T3 153.33±11.55ab 75.83±1.57b 164.27±3.59ab
T4 146.67±11.55abc 75.11±1.55bc 163.80±0.70ab
T5 133.33±11.55bc 72.41±1.50c 160.53±1.62b
2022 早稻 CK 113.33±11.55b 36.08±2.28c 172.20±3.70b
T1 153.33±11.55a 44.97±3.34a 184.80±4.85a
T2 140.00±20.00ab 41.90±2.27ab 183.40±5.05ab
T3 140.00±20.00ab 45.33±0.89a 187.13±7.05a
T4 133.33±11.55ab 39.68±1.73bc 182.93±5.30ab
T5 133.33±11.55ab 39.26±1.30bc 182.47±6.31ab
晚稻 CK 166.67±11.55b 38.49±3.54d 92.87±5.66b
T1 240.00±10.00a 49.52±2.77b 106.40±7.79ab
T2 186.67±11.55b 46.35±3.42c 100.33±5.83ab
T3 260.00±20.00a 55.97±2.60a 107.80±9.18a
T4 186.67±11.55b 46.14±6.68c 97.07±5.83ab
T5 180.00±12.00b 39.38±0.68c 92.87±3.52b

Fig.3

Principal component analysis of effects of calcium-magnesium hydrotalcite on soil pH, available cadmium and nutrients AC: available cadmium, AP: available P, AK: available K, AN: available N. The same below."

Fig.4

Correlation between calcium-magnesium hydrotalcite and soil characteristics and cadmium content in brown rice Z and W indicate early rice and late rice, respectively; 1 and 2 indicate 2021 and 2022, respectively; C indicates cadmium content in brown rice. CM: calcium magnesium hydrotalcite dosage, XZX45: Xiangzaoxian 45, LLY996: Luliangyou 996, YZX: Yuzhenxiang, CLY669: Chuangliangyou 669, ZLY4026: Zhuliangyou 4026. *: P < 0.05, **: P < 0.01, ***: P < 0.001."

[1] 石刚, 庞巧莲, 李文燕, 等. 土壤调理剂的应用现状及前景. 现代农业科技, 2021(24):138-139.
[2] 邓耀辉, 叶钰. 近40年间长沙市稻田土壤肥力变化特征. 湖南农业科学, 2022(8):36-39.
[3] 杨小粉, 刘钦云, 袁向红, 等. 综合降镉技术在不同污染程度稻田土壤下的应用效果研究//全国第十七届水稻优质高产理论与技术研讨会论文摘要汇编,2017:37-38.
[4] 王蜜安, 尹丽辉, 彭建祥, 等. 综合降镉(VIP)技术对降低糙米镉含量的影响研究. 中国稻米, 2016, 22(1):43-47.
[5] 罗刚, 吴万鹏, 陈都, 等. 硫酸钾钙镁肥对水稻茎蘖发生和产量形成的影响. 大麦与谷类科学, 2020, 37(2):27-29,34.
[6] 陆世忠, 曾茜茜, 刘敏强, 等. 4种土壤调理剂对水稻产量及稻米镉吸收的影响. 安徽农学通报, 2017, 23(23):49-50.
[7] 李翔, 杨驰浩, 刘晔, 等. 钝化剂对农田土壤Cd有效性及不同水稻品种吸收Cd的研究. 环境工程, 2021, 39(9):211-216.
[8] 黎小鹏, 周嘉诚, 陈楠, 等. 复合改良剂对稻米与土壤镉污染的阻控效果研究. 湖北农业科学, 2021, 60(14):46-50.
[9] 田琴琴, 张菲婷, 陈娜娜, 等. 钙镁水滑石对双季稻产量及稻米镉积累的影响. 水土保持学报, 2023, 37(1):353-361.
[10] 李强, 赵秀兰, 胡彩荣, 等. ISO 10390:2005土壤质量pH的测定. 污染防治技术, 2006(1):19.
[11] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
[12] 国家标准化管理委员会, 国家质量监督检验检疫总局. 土壤质量―有效态铅和镉的测定―原子吸收法:GB/T 23739-20. 北京: 中国标准出版社,2019.
[13] Luo Q H, Bai B, Xie Y H, et al. Effects of Cd uptake,translocation and redistribution in different hybrid rice varieties on grain Cd concentration. Ecotoxicology and Environmental Safety, 2022,240:113683.
[14] Liu Ch, Wang L, Yin J, et al. Combined amendments of nano-hydroxyapatite immobilized cadmium in contaminated soil- potato (Solanum tuberosum L.) system. Bulletin of Environmental Contamination and Toxicology, 2018, 100(4):581-587.
[15] Hong C O, Lee D K, Chung D Y, et al. Liming effects on cadmium stabilization in upland soil affected by gold mining activity. Archives of Environmental Contamination Toxicology, 2007(52):496-502.
[16] He Y B, Huang D Y, Zhu Q H, et al. A three-season field study on the in-situ remediation of Cd-contaminated paddy soil using lime, two industrial by-products,and a low-Cd-accumulation rice cultivar. Ecotoxicology and Environmental Safety, 2017,136:135-141.
[17] 林小兵, 武琳, 王惠明, 等. 不同用量土壤调理剂对镉污染农田土壤环境的影响. 长江流域资源与环境, 2021, 30(7):1734-1745.
[18] 严勋, 唐杰, 李冰, 等. 不同水稻品种对镉积累的差异及其与镉亚细胞分布的关系. 生态毒理学报, 2019, 14(5):244-256.
[19] 易镇邪, 袁珍贵, 陈平平, 等. 土壤pH值与镉含量对水稻产量和不同器官镉累积的影响. 核农学报, 2019, 33(5):988-998.
doi: 10.11869/j.issn.100-8551.2019.05.0988
[20] 袁珍贵, 陈平平, 郭莉莉, 等. 三个优质晚稻品种镉积累分配特性差异分析. 华北农学报, 2017,32(增):174-179.
[21] 胡雪芳, 田志清, 梁亮, 等. 不同改良剂对铅镉污染农田水稻重金属积累和产量影响的比较分析. 环境科学, 2018, 39(7):3409-3417.
[22] Yao W, Sun L, Zhou H, et al. Additive, dominant parental effects control the inheritance of grain cadmium accumulation in hybrid rice. Molecular Breeding, 2015,35:15.
[23] He J Y, Zhu C, Ren Y F, et al. Genotypic variation in grain cadmium concentration of lowland rice. Journal of Plant Nutrition and Soil Science, 2006, 169(5):711-716.
[24] 刘艳, 李慧, 卢海威, 等. 1种钝化剂对3种水稻生长影响及降镉效果的研究. 安全与环境学报, 2019, 19(1):290-299.
[25] Sun L, Xu X X, Jiang Y R, et al. Genetic diversity, rather than cultivar type,determines relative grain Cd accumulation in hybrid rice. Frontiers in Plant Science, 2016,7:1047.
[26] 江棋. 土壤调理剂对镉污染稻田土壤质量和稻米品质的影响. 武汉: 华中农业大学 2020.
[27] 温权州, 冉露, 周富忠, 等. 土壤调理剂对降低土壤酸性和水稻镉含量的影响. 湖北大学学报(自然科学版), 2022, 44(2):184-189.
[28] 田琴琴, 卓乐, 王罕, 等. 钙镁水滑石施用方式对双季稻镉吸收转运的影响. 核农学报, 2023, 37(9):1852-1863.
doi: 10.11869/j.issn.1000-8551.2023.09.1852
[29] 周谈坛, 李丹丹, 邱丽丽, 等. 不同配施比例下秸秆和木本泥炭对快速提升土壤有机质和作物产量的耦合影响. 土壤学报, 2023, 24(3):1-16.
[30] 沙乐乐. 水稻镉污染防控钝化剂和叶面阻控剂的研究与应用. 武汉: 华中农业大学 2015.
[31] 王伯平. 土壤调理剂“土调1号”对水稻生长及产量的影响. 福建农业科技, 2019(2):33-34.
[32] 刘杰, 罗尊长, 肖小平, 等. 土壤调理剂对冷浸田土壤特性及水稻生长的影响. 土壤, 2016, 48(3):529-533.
[1] Sun Jiameng, Gao Yuan, Chen Hu, Hua Qin, Lin Quanxiang, Chen Qingquan, Li Jincai, Zhang Haitao. Phenotypic Analysis and Gene Mapping of Rice Mutant Chalkiness and Shrunken Endosperm-2 [J]. Crops, 2024, 40(5): 1-7.
[2] Hao Qingting, Gao Wei, Zhang Zeyan, Yan Hubin, Zhu Huijun, Zhang Yaowen. The Effects of Iron Fertilizer Application on Yield and Fe Concent of Grains in Mung Bean [J]. Crops, 2024, 40(5): 105-109.
[3] Sun Guangxu, Liu Ying, Wang Xinyi, Kong Deyong, Wei Na, Xing Liwen, Guo Wei. Effects of Population Density and Fulvic Acid on Yield and Nutritional Quality of Kidney Bean [J]. Crops, 2024, 40(5): 110-118.
[4] Wang Shanshan, Yang Yulei, Liu Feihu, Yang Yang, Tang Kailei, Li Tao, Niu Longjiang, Du Guanghui. Effects of Concentrations and Treatment Periods of Polyazole on Inflorescence and Leaves Yield and Cannabidiol Content of Industrial Hemp [J]. Crops, 2024, 40(5): 119-124.
[5] Huang Yulan, Liu Wenjun, Li Yanying, Zhou Jia, Zhou Lingzhi, Lao Chengying, Li Suping, Shen Zhangyou, Wei Benhui. Effects of Intercropping Cassava with Pumkin of Different Densities in Cassava Fields on Crop Yield, Economic Efficiency and Land Productivity [J]. Crops, 2024, 40(5): 125-130.
[6] Mu Jianguo, Wang Peng, Liu Yantao, Cui Jiawei, Chen Yanfang, Wan Sumei, Chen Guihong. Effects of Different Harvesting Periods on the Commerciality and Yield of Edible Sunflower [J]. Crops, 2024, 40(5): 146-151.
[7] Li Hongliang, Sun Yuyou, Wei Caiqiang, Liu Dan, Xie Zhong, Cheng Dujuan, Qu Jinling, Song Ze, Meng Xianghai, Zhao Yuntong, Shi Xinrui. Effects of Controlled Irrigation and Fertilization on Growth, Yield and Quality of Japonica Rice in Cold Region [J]. Crops, 2024, 40(5): 152-158.
[8] Cao Shaona, Wu Lixiao, Guan Yaobing, Wang Kexiong. Effects of Different Types and Dosage of Bacterial Fertilizer on Yield and Quality of Broccoli [J]. Crops, 2024, 40(5): 159-166.
[9] Li Junzhi, Wang Xiaodong, Dou Shuang, Xin Zongxu, Wu Hongsheng, Zhou Yufei, Xiao Jibing. Effects of L-Tryptophan on Growth and Development of Sorghum under Low Nitrogen Condition [J]. Crops, 2024, 40(5): 175-180.
[10] Liu Zichen, Shang Liyan, Ye Jiayu, Sheng Tian, Li Ruijie, Deng Jun, Tian Xiaohai, Zhang Yunbo, Huang Liying. Effects of Dense Planting with Reduced Nitrogen Input Cultivation on the Grain Quality of Hybrid Indica Rice [J]. Crops, 2024, 40(5): 194-203.
[11] Zhou Qi, Wu Fang, Wang Zhenlong, Xu Zhipeng, Deng Chaochao, Shi Zhiguo, Zhang Jing, Su Cuicui, Yu Yalin, Zhou Yanfang. Effects of Nitrogen Fertilizer and Biochar Application Rate Interaction on Growth and Root-Knot Nematode Disease of Greenhouse Tomatoes [J]. Crops, 2024, 40(5): 212-219.
[12] Zhou Xue, Han Fang, Su Leping, Li Xingxing, Niu Hongwei, Guo Wei, Yuan Hongʼan. Effects of Planting Density on Agronomic Traits and Yield of Spring Foxtail Millet [J]. Crops, 2024, 40(5): 241-246.
[13] Dong Mingyu, Zheng Hongfeng, Zhu Zhe. Effects of Different Endosperm Phenotypes on Agronomic Traits and Yield in Sorghum [J]. Crops, 2024, 40(5): 29-34.
[14] Zhang Lili, Li Zhenyu, Chen Guanghong, Wang Shaolin, Xia Ming, Zheng Yingjie, Wang Ying, Wang Tong, Mao Ting, Yu Yahui. Analysis and Evaluation of Nutrient Composition of Special Rice Germplasm Resources Based on the Principal Component Analysis [J]. Crops, 2024, 40(5): 40-47.
[15] He Jiahui, Li Yanfeng, Yan Tianze, Zhang Xuanwen, Qin Peng, Guo Jinyou, Wang Kai, Liu Xionglun, Yang Yuanzhu. The Effects of Reducing Nitrogen Fertilizer Application on the Yield and Quality of Super Rice Weiliangyou 8612 [J]. Crops, 2024, 40(5): 73-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!