Crops ›› 2025, Vol. 41 ›› Issue (3): 225-232.doi: 10.16035/j.issn.1001-7283.2025.03.031

Previous Articles     Next Articles

Effects of Nitrogen Fertilizer and Seeding Amount Configuration on Yield Formation of Rapeseed by Aerial Seeding

Yang Zepeng(), Wan Kejun, Zheng Shenghua, Ao Yuqin, Ma Mingkun, Wan Xue, Li Shanshan, Song Xin, Wang Changtao, Chen Shanghong, Liu Dinghui, Chen Honglin()   

  1. Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences /Key Laboratory of Southwest Mountain Agricultural Environment, Ministry of Agriculture and Rural Affairs, Chengdu 610066, Sichuan, China
  • Received:2024-03-16 Revised:2024-04-10 Online:2025-06-15 Published:2025-06-03

Abstract:

In order to determine the appropriate rate of nitrogen application and sowing rate for rice stubble sown rapeseed in hilly area of Sichuan, as well as to provide a theoretical basis to enhance the yield potential of late sown rapeseed in the hilly area of Sichuan and the high-yield and high-efficiency cultivation of rapeseed. We did this by analyzing the differences in population growth and development, yield formation, and nitrogen utilization under various nitrogen fertilizer levels and sowing rates of rapeseed sown by unmanned aerial vehicles (UAVs). During 2020-2021, a field trial was conducted in Anzhou district, Mianyang city, Sichuan Province. No N application and sowing rate of 3.5 kg/ha (N0S3.5) were used as the control, and two treatments with pure N levels: 135 kg/ha (N135) and 180 kg/ha (N180), and two treatments with unmanned aerial seeding: 3.0 kg/ha (S3.0) and 4.5 kg/ha (S4.5) were set. The results showed that the rapeseed yield increased with the increase of sowing amount or nitrogen application amount under the condition of equal nitrogen amount or equal sowing amount. The highest yield of 3143.05 kg/ha was attained at 180 kg/ha N application and 4.5 kg/ha sowing rate, which was significantly increased by 16.50%, 14.93% and 69.86% (P < 0.05) over N135S3.0, N135S4.5 and N0S3.0 treatment, respectively, and by 13.7% over N180S3.0 treatment. Nitrogen fertiliser apparent utilisation and nitrogen fertiliser agronomic rate reached the maximum. Under the condition of high nitrogen, reasonable increase of seeding amount can significantly improve the population green leaf number and LAI during the growth period of rape, effectively promote the increase of branch number, cornering number and dry matter accumulation rate of rape population, prolong the dry matter accumulation time, increase the total dry matter and nitrogen, and realize the construction of high-yield rape population and the synergic improvement of yield and nitrogen utilization rate. Therefore, 180 kg/ha nitrogen fertilizer and 4.5 kg/ha nitrogen fertilizer and sowing amount should be used in the production of UAV flying sowing in Sichuan hilly area.

Key words: Rapeseed, Unmanned aerial seeding, Nitrogen application rate, Seeding rate, Yield components, Nitrogen fertilizer utilization

Fig.1

Daily mean temperature and daily rainfall during the reproductive period of rapeseed at the test site from October 2020 to June 2021"

Table 1

Experimental design kg/hm2"

处理Treatment N P2O5 K2O 播种量Seeding rate
N0S3.0 0 90 90 3.0
N180S3.0 180 90 90 3.0
N180S4.5 180 90 90 4.5
N135S3.0 135 90 90 3.0
N135S4.5 135 90 90 4.5

Table 2

Effects of yield and its components of rapeseed at maturity stage"

处理
Treatment
分枝数
Number of branches (/m2)
角果数
Number of siliques (/m2)
每角粒数
Number of seeds per silique
千粒重
1000-seed weight (g)
产量
Yield (kg/hm2)
N0S3.0 45.00c 1421.25c 17.52b 4.31a 1627.70c
N180S3.0 235.83b 5789.06ab 21.16a 4.27a 2764.80ab
N180S4.5 323.63a 6504.86a 21.40a 4.29a 3143.05a
N135S3.0 259.99ab 4865.00b 21.16a 4.29a 2697.95b
N135S4.5 250.30b 5072.18b 20.94a 4.28a 2734.78b

Fig.2

Dynamic characteristics of the number of green leaves and leaf area index in rapeseed populations"

Fig.3

Dynamic characteristics of dry matter accumulation in rapeseed populations"

Table 3

Dynamic characteristic value of dry matter accumulation of rapeseed populations"

处理
Treatment
Wmax
(g/m2)
Vmax
[g/(m2·d)]
Tmax
(d)
T1
(d)
T2
(d)
T
(d)
回归方程
Regression equation
决定系数
Coefficient of determination (R2)
N0S3.0 543.39 0.62 140.23 132.05 148.41 16.36 y=543.39/(1+6.42E+09e-0.1610x) 0.99451
N180S3.0 1037.88 1.33 131.66 123.85 139.48 15.63 y=1037.88/(1+4.33E+09e-0.1685x) 0.99472
N180S4.5 1252.12 1.65 133.28 125.77 140.78 15.01 y=1252.12/(1+1.43E+10e-0.1754x) 0.99709
N135S3.0 1001.05 1.38 134.16 127.02 141.30 14.28 y=1001.05/(1+5.63E+10e-0.1845x) 0.99525
N135S4.5 974.95 1.28 134.54 127.10 141.98 14.88 y=974.95/(1+2.21E+10e-0.1770x) 0.99253

Table 4

Characteristics of nitrogen accumulation and partitioning of rapeseed populations at maturity stage"

处理
Treatment
氮素积累Nitrogen accumulation (kg/hm2) 氮素分配比例Nitrogen distribution ratio (%)
整株
Whole plant
茎枝
Stem and branch
角果壳
Shell
籽粒
Seed
茎枝
Stem and branch
角果壳
Shell
籽粒
Seed
N0S3.0 65.64d 7.74c 7.50c 50.40b 11.86a 11.23ab 76.91a
N180S3.0 129.17ab 23.28a 15.31ab 90.57a 18.00a 11.85ab 70.16b
N180S4.5 136.12a 20.60a 17.82a 97.69a 15.12a 13.10a 71.77ab
N135S3.0 104.05c 13.58bc 11.05bc 79.42a 13.01a 10.55ab 76.44a
N135S4.5 112.47bc 18.72ab 10.92bc 82.83a 17.10a 9.62b 73.28ab

Fig.4

Nitrogen fertilizer utilization in rapeseed Different lowercase letters indicate significant differences between different treatment at 0.05 level."

[1] 胡文诗, 李银水, 赵曼利, 等. 不同含油量油菜品种的养分吸收积累与利用效率特征. 中国农业科学, 2023, 56(24):4895-4905.
doi: 10.3864/j.issn.0578-1752.2023.24.008
[2] Li X Y, Zuo Q S, Chang H B, et al. Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River Basin of China. Field Crops Research, 2018,218:97-105.
[3] 郑伟, 叶川, 肖国滨, 等. 油-稻共生期对谷林套播油菜苗期性状及产量形成的影响. 中国农业科学, 2015, 48(21):4254-4263.
doi: 10.3864/j.issn.0578-1752.2015.21.006
[4] 郭翔, 赵金鹏, 王茹琳, 等. 四川盆区油菜播期涝渍害时空特征及危险性. 生态学杂志, 2022, 41(7):1406-1413.
[5] 张青松, 张恺, 廖庆喜, 等. 油菜无人机飞播装置设计与试验. 农业工程学报, 2020, 36(14):138-147.
[6] 王建国, 耿耘, 杨佃卿, 等. 单粒精播对中、高产旱地花生群体质量及养分利用的影响. 作物学报, 2022, 48(11):2866-2878.
doi: 10.3724/SP.J.1006.2022.14212
[7] 蒯婕, 杜雪竹, 胡曼, 等. 共生期与种植密度对棉田套播油菜生长及产量的影响. 作物学报, 2016, 42(4):591-599.
[8] 宋稀, 刘凤兰, 郑普英, 等. 高密度种植专用油菜重要农艺性状与产量的关系分析. 中国农业科学, 2010, 43(9):1800-1806.
[9] 田效琴, 李卓, 刘永红. 施氮量和播种密度对不同熟期油菜干物质量和产量的影响. 核农学报, 2019, 33(4):798-807.
doi: 10.11869/j.issn.100-8551.2019.04.0798
[10] 刘翠莲, 刘雪基, 蔡建华, 等. 播期、播量对稻田套播油菜产量及产量结构的影响. 江苏农业科学, 2011, 39(4):81-82.
[11] 吴永成, 陈天才, 彭海浪, 等. 施氮量和种植密度对迟直播油菜产量、品质及氮肥利用率的影响. 西南农业学报, 2012, 25(4):1320-1325.
[12] 左青松, 蒯婕, 杨士芬, 等. 不同氮肥和密度对直播油菜冠层结构及群体特征的影响. 作物学报, 2015, 41(5):758-765.
[13] Begna S H, Angadi S V. Effects of planting date on winter canola growth and yield in the southwestern U.S.. American Journal of Plant Sciences, 2016, 7(1):201-217.
[14] 王玲. 油菜光合面积指数消长变化及高产群体指标研究. 武汉:华中农业大学, 2019.
[15] 黄小毛, 徐胡伟, 张顺, 等. 油菜成条飞播装置设计与试验. 农业工程学报, 2020, 36(5):78-87.
[16] 孟孜贞, 王崇铭, 鲁明星, 等. 免耕飞播条件下稻田油菜长效专用配方肥适宜用量研究. 中国土壤与肥料, 2023(12):151-157.
[17] 裴霄敏, 邹家龙, 肖依波, 等. 谷林套种飞播对冬油菜生长和养分吸收及经济效益的影响. 长江大学学报(自然科学版), 2020, 17(6):68-74.
[18] 郑伟, 肖国滨, 肖小军, 等. 稻茬高度对谷林套播油菜生长发育及产量形成的影响. 中国农业科学, 2017, 50(4):648-656.
doi: 10.3864/j.issn.0578-1752.2017.04.005
[19] 周玮峰, 鲁剑巍, 程应德, 等. 油菜谷林飞播秸秆全量还田种植模式技术要点. 中国农技推广, 2019, 35(增1):46-48.
[20] 王翠翠, 陈爱武, 王积军, 等. 湖北双季稻区免耕直播油菜生长及产量形成. 作物学报, 2011, 37(4):694-702.
[21] 田贵生, 周志华, 程应德, 等. 鄂东晚收稻田油菜两种飞播种植模式的产量及效益比较. 中国农学通报, 2022, 38(18):57-61.
doi: 10.11924/j.issn.1000-6850.casb2021-0792
[22] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
[23] 白非, 白桂萍, 王春云, 等. 翻耕深度对遮阴油菜根系生长和养分吸收利用的影响. 中国农业科学, 2022, 55(14):2726-2739.
doi: 10.3864/j.issn.0578-1752.2022.14.004
[24] 乔嘉, 朱金城, 赵姣, 等. 基于Logistic模型的玉米干物质积累过程对产量影响研究. 中国农业大学学报, 2011, 16(5):32-38.
[25] 韦金贵, 郭瑶, 柴强, 等. 水氮减量密植玉米的产量及产量构成. 作物学报, 2023, 49(7):1919-1929.
doi: 10.3724/SP.J.1006.2023.23056
[26] 付三雄, 周晓婴, 张维, 等. 种植密度和施氮量对油菜产量、品质及机收性状的影响. 江苏农业学报, 2016, 32(3):548-556.
[27] 王锐, 吴位仙, 郑卫东, 等. 氮素水平与品种对直播冬油菜农艺性状、产量及其构成因子的影响. 江苏农业科学, 2019, 47(14):77-81.
[28] 袁嘉琦, 刘艳阳, 许轲, 等. 氮密处理提高迟播栽粳稻资源利用和产量. 作物学报, 2022, 48(3):667-681.
[29] 曾宇, 雷雅丽, 李京, 等. 氮磷钾用量与种植密度对油菜产量和品质的影响. 植物营养与肥料学报, 2012, 18(1):146-153.
[30] 王杰, 周雨, 黄晓芳, 等. 不同播期、密度与施氮水平对直播油菜生长及产量的影响. 作物研究, 2021, 35(4):330-335.
[31] 余新颖, 王春云, 李大双, 等. 高产油菜品种稳产性形成机制. 作物学报, 2023, 49(6):1601-1615.
doi: 10.3724/SP.J.1006.2023.24115
[32] Kuai J, Li X Y, Yang Y, et al. Effects of paclobutrazol on biomass production in relation toresistance to lodging and pod shattering in Brassica napus L.. Journal of Integrative Agriculture, 2017, 16(11):2470-2481.
[33] 刘秋霞, 任涛, 张萌, 等. 秸秆还田与氮磷钾化肥配施对直播冬油菜产量及其构成因子的影响. 中国土壤与肥料, 2016(6):68-73.
[34] 袁圆, 汪波, 周广生, 等. 播期和种植密度对油菜产量和茎秆抗倒性的影响. 中国农业科学, 2021, 54(8):1613-1626.
doi: 10.3864/j.issn.0578-1752.2021.08.004
[35] 王芳东, 吕伟生, 符明金, 等. 密植减氮对三熟区不同肥力红壤稻田作物产量和耕层氮素的影响. 水土保持学报, 2020, 34(5):285-291.
[36] 杨秉庚, 蔡思源, 刘宇娟, 等. 土壤供保氮能力决定稻田氮肥增产效果和利用率. 土壤学报, 2023, 60(1):212-223.
[37] 吕伟生, 肖富良, 张绍文, 等. 种肥播施方式对红壤旱地油菜产量及肥料利用率的影响. 作物学报, 2020, 46(11):1790-1800.
doi: 10.3724/SP.J.1006.2020.94203
[38] 严红梅, 段秋宇, 李虹桥, 等. 密度对甘蓝型矮秆油菜干物质及氮素积累分配的影响. 华北农学报, 2021, 36(增1):143-148.
[39] 巢成生, 王玉乾, 沈欣杰, 等. 甘蓝型油菜苗期氮高效吸收转运特征研究. 中国农业科学, 2022, 55(6):1172-1188.
doi: 10.3864/j.issn.0578-1752.2022.06.010
[40] 蒯婕, 王积军, 左青松, 等. 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51(24):4625-4632.
doi: 10.3864/j.issn.0578-1752.2018.24.004
[41] 盛倩男, 余小红, 周雄, 等. 油菜与杂草生物量和养分竞争对氮磷钾肥用量的响应. 中国农业科学, 2023, 56(3):481-489.
doi: 10.3864/j.issn.0578-1752.2023.03.007
[1] Jin Ping, Liu Haidong. Development Status and Countermeasures of Rapeseed Seed Industry Development in Qinghai Province [J]. Crops, 2025, 41(3): 11-15.
[2] Wang Li, Zhang Chengjie, Hu Haoran, Ning Liyun, Wu Yifan, Guo Rensong, Zhang Jusong. Effects of Nitrogen Application Rate and Planting Density on Canopy Structure and Photosynthetic Characteristics of Sea Island Cotton [J]. Crops, 2025, 41(3): 116-124.
[3] Yang Tianxu, Li Jincheng, Huang Ruiyin, Deng Wenjun, Wang Jun, Wang Wei, Cai Yixia. Regulation Effects of Nitrogen Application Rate and Basal-Topdressing Ratio on Nicotine Synthesis and Key Enzyme Activities of Flue-Cured Tobacco [J]. Crops, 2025, 41(3): 156-164.
[4] Li Hu, Huang Qiuyao, Wu Zishuai, Liu Guanglin, Chen Chuanhua, Luo Qunchang, Zhu Qinan. Effects of Planting Density and Nitrogen Application Rate on Yield and Rice Quality of High-Quality Conventional Rice Guiyu 12 [J]. Crops, 2025, 41(3): 195-201.
[5] Mi Dongming, Zhou Zuoyan, Zhang Xiaoyan, Fan Zhenjie, Sun Peijie, Huang Xiao, Ren Aixia, Sun Min, Ren Yongkang. Effects of Nitrogen Application Rate on Matter Transfer and Protein Content in Black Wheat [J]. Crops, 2025, 41(2): 155-161.
[6] Long Weihua, Xian Zhihui, Zhang Zheng, Alibieligen·Hazitai , Zulehumaer·Wusimanjiang , Pu Huiming, Hu Maolong. Adaptability Analysis of Non-Transgenic Herbicide-Resistant Hybrid Rapeseed Lines from Lower Reaches of the Yangtze River in Ili River Valley, Xinjiang [J]. Crops, 2025, 41(1): 111-116.
[7] Zhu Zijian, Chen Nana, Wu Yueying, Rang Zhongwen, Dai Linjian, Tian Minghui, Tian Feng, Yi Zhenxie. Effects of Nitrogen Application Rate, Planting Density and Retained Leaf Number on Yield and Quality of Xiangyan 7 in Tobacco Region of Western Hunan [J]. Crops, 2025, 41(1): 179-186.
[8] Lü Weisheng, Wang Xinyue, Chen Ming, Deng Xueyun, Zhang Chen, Li Zijing, Luo Junyuan, Liu Xiaosan, Xiao Guobin. The Effect and the Residual Effect of Special Controlled-Release Nitrogen Fertilizer for Rapeseed (Brassica napus L.) under Rapeseed-Sesame Rotation System in Red-Soil Dryland [J]. Crops, 2024, 40(6): 113-119.
[9] Yu Mu, Yang Haitang, Hu Yanling, Liu Ruanzhi, Shi Yanzhao, Li Pan, Han Yanhong, Zhu Zhenzhen, Li Shizhong, Guo Zhenchao. Genotype-by-Environment Interaction and Stability of Yield Components in Peanut [J]. Crops, 2024, 40(6): 55-60.
[10] Li Junzhi, Wang Xiaodong, Dou Shuang, Xin Zongxu, Wu Hongsheng, Zhou Yufei, Xiao Jibing. Effects of L-Tryptophan on Growth and Development of Sorghum under Low Nitrogen Condition [J]. Crops, 2024, 40(5): 175-180.
[11] Lu Jiahui, Wang Shuang, Li Yun, Guo Zhenqing, Wang Jian, Han Yucui, Lin Xiaohu. Effects of Reduced Nitrogen Application on Nitrogen Utilization and Grain Quality in Different Organs of Spring Wheat [J]. Crops, 2024, 40(5): 220-227.
[12] He Jiahui, Li Yanfeng, Yan Tianze, Zhang Xuanwen, Qin Peng, Guo Jinyou, Wang Kai, Liu Xionglun, Yang Yuanzhu. The Effects of Reducing Nitrogen Fertilizer Application on the Yield and Quality of Super Rice Weiliangyou 8612 [J]. Crops, 2024, 40(5): 73-79.
[13] Zhang Lijuan, Qin Yukun, Chen Junying. Effects of Nitrogen Application Rate on Cotton Yield Formation and Nitrogen Utilization Efficiency under Rape-Cotton Double Cropping Straw Returning Condition [J]. Crops, 2024, 40(4): 158-163.
[14] Xiao Min, Guo Lang, Cui Can, Cheng Zhouqi, Liu Yuwu, Zhuo Le, Wu Si, Yi Zhenxie. Effects of Phosphate Fertilizer Management on Yield Components and Nutrient Uptake and Utilization in Mechanical Transplanting Double-Cropping Rice [J]. Crops, 2024, 40(2): 178-188.
[15] Qin Birong, You Saiya, Chen Shurong, Zhu Lianfeng, Kong Yali, Zhu Chunquan, Tian Wenhao, Zhang Junhua, Jin Qianyu, Cao Xiaochuang, Liu Li. Effects of the Different Nitrogen Levels on Yield, Nitrogen Utilization Efficiency and the Nitrogen Balance of Double-Cropping Rice in Paddy Field [J]. Crops, 2024, 40(2): 89-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!